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ABSTRACT. By using the latest precession theory of Fukushima and the nutation theory
of Shirai and Fukushima, we numerically obtained a new approximation of the quantity s +
XY/2 and the coefficients of the linear relation between the Earth Rotation Angle and UTI.
These are key formulae in the post-2003 [AU formulation to connect the International Celestial
Reference Frame and the International Terrestrial Reference Frame. Also we modified the pre-
2003 IAU formula converting Greenwich Apparent Sidereal Time (GAST) from/to UT1 so as
to be compatible with the modern observation of Earth orientation. The difference from the
computation of Capitaine et al. is significant only in the secular components. This is due to
the difference in the adopted precession formulae. From the viewpoint of approximation, we
prefer the approach of GAST-UT1 relation since it requires the fewer terms in achieving the
same degree of approximation.

1. INTRODUCTION

One of the most important procedures in the fundamental astronomy is the transformation
between the two representative reference systems, the International Celestial Reference System
(ICRS) and the International Terrestrial Reference System (ITRS). At its XXIVth General
Assembly at Manchester, the International Astronomical Union (IAU) changed the policy to
conduct the transformation. Since the new approach is to be used from 2003, we call the new
and the old formulations the post- and the pre-2003 [AU formulations throughout this article.

The precession, the nutation, and the sidereal rotation are tightly connected with each
other so that a change of any part of them inevitably induces the appropriate alterations of
the others. Recently we developed a new formulation of precession (Fukushima 2003) such
that its combination with our previous work on the nutation theory (Shirai and Fukushima
2001) provides a satisfactory agreement with the VLBI observation of celestial pole offsets. Its
most significant feature is that not only the lunisolar precession formula but also the planetary
precession one is improved. Actually the latter is compatible with the latest planetary/lunar
ephemeris, DE405. In the light of the above statement, however, it is far from the completion to
update only the theories of precession and nutation, which specify the true equator and equinox
of date. Rather requested is a suitable replacement of the procedure of sidereal rotation such
that the whole new formulation as a package is compatible with the modern observation of
Earth orientations. In this short paper, we report our trials for both the pre- and post-2003
formulations using our new precession and nutation theories.
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2. ANOTHER ANGLE TO SPECIFY CEO, ¢

As Aoki and Kinoshita (1983) clearly stated, Newcomb’s definition of UT1 is based on
the usage of departure point in specifying the longitude origin along the true equator of date.
This is no other than the CEO, the Non-Rotating Origin (NRO) on the true equator. The
angle s has been mainly used in locating the CEO. On the other hand, Aoki and Kinoshita
(1983) provided the analytical expression of ¢, the angle between the true equinox and the
CEO after the correction of the so-called nutation in RA as simply as (Ag — Atcosepr), =
—3.88t + 2.64 sin 2 4+ 0.063 sin 22 where the unit is mas. The absence of high order trends and
mixed secular terms indicates a promising direction. In the below, we develop a new approach
to evaluate the angle difference.

The rotational operation converting X, the z-axis of ICRF, to the CEQ is expressed by the
following five rotation matrices;

R3(q)(NP)xew = R3(q)Ri(—€)R3(—¢)R1(P)R3(7). (1)

Then, the angular velocity vector of the CEO with respect to an inertial reference frame is

expressed as
~ (dq\ . do\ | de\ dpy | d¥\
WCEO = (a) ep — (E) ec — (a) eq + (E) eN + (E €7, (2)

where €5, means the unit vector toward a point A. The points additionally used are Z as the
ICRF pole, C as the ecliptic pole of date, and P as the equatorial pole of date.

Since the CEO is a non-rotating origin, its inertial motion has no rotational component
around P. This is expressed in terms of the angular velocity vector as wcgo - ép = 0. By solving
this equation, we derive the differential equation of ¢ as

dg dv . . ode,. . dp . . dy .
ot (ep €C)+dt (€p - €q) — m (€p - en) — Tt (€p - €z) . (3)

Noting the fact that €p - €g = 0 and using the expressions

X cos ¥y sin psin ¥y
=Y |, en=| siny |, éc=| —sin@cosy |, (4)
A 0 cosp

we obtain an explicit expression

o _ (1

dpy . . dyy . - _
il Wt ) cose€ — (E) sin esin ¢ — (E) (sin € cos sin @ 4 cos €cos @) , (5)

where we used the explicit expressions of the equatorial pole coordinates.

In order to explore an approximate solution of this differential equation, let us ignore the nu-
tation in obliquity when compared with the mean obliquity. Also we assume that the precession
in longitude is so small that its cubic and higher order terms are negligible. Further we neglect
the difference between two mean obliquities, € and i, which is small. Then we approximate the
right hand side of the above differential equation as

d d de dy d
d—zz (d—f) COSE — (d—i)zbsinE— (d—Z) :a(lbcosE—i). (6)

This is easily integrated and, apart from the constant offset, we obtain an approximate solution
q ~ ¢* where ¢ = tpcos€ — 7. This is further decomposed into the sum of the secular and the
periodic components as ¢* = ¢* + Ag¢*, where ¢* = ¢pcos€ — 7 and Ag* = At cose. The former
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is no other than the accumulated precession in RA and the latter is the well-known nutation
in RA. Therefore, the angle ¢* can be said as the accumulated precession and nutation in RA.
Note that ¢* contains no large mixed secular terms of high orders.

Now we change the variable to be integrated from ¢ itself to the deviation from this approx-
imate solution as d¢ = ¢ — ¢*. Then its differential equation becomes

d@ . . . d7 . 92 €—p . 2¢ . .
—(dt)smlb(sme—sme)—l—Q(dt) |:Sln ( 5 + sin 5 sinesing| . (7)

All the terms in the right hand side are small in the sense they are of the order of nutation or
of the quadratic and higher terms of precessions.

We numerically integrated the transformed equation. The resulting expression of §¢ seems to
contain no significant nonlinear trend nor mixed secular terms judging from its numerical plot-
ting. By using the successive method of harmonic analysis again, we decomposed the integrated
8¢ into a sum of a quintic polynomial of time and some harmonic terms as é¢ = 8¢ + A(dq).
Here the secular part is

5q = —3.857532t — 0.108393t% — 0.148087¢° + 0.014484¢* — 0.000481¢>, (8)

where the unit is mas, ¢ is the time since J2000.0 measured in Julian centuries, and we set
the constant term of the secular part be zero for simplicity.

As for the residuals of the decomposition, the rms and the maximum deviation is almost
the same as in the case of s+ XY/2; 0.19 pas and 0.96 pas, respectively. This time, however,
this level of precision is realized by the fewer terms. Namely ¢ or d¢ is more suitable than s or
s+ XY/2 in describing the inertial motion of the location of the CEQO. For example, 5 largest
terms are enough to approximate §¢ with the maximum error less than 0.1 mas during the period
1900-2100. While we need 8 terms in expressing s + XY/2 at the same level.

Let us return to q itself. We separate it into the sum of the secular and periodic terms;
g = 7+ Aq. Rearranging the approximate formulae of ¢ obtained in the above, we have the
final expressions § = ¢* + d¢ and Ag = Ag* + A(dg). In order to obtain the secular part, we
evaluated ¢* for the period 1900-2100 and determined its best-fit polynomial as

7 = cost — 7 = 12.911569 4 4612160.517397¢ + 1391.650906¢2
10.023238¢3 — 0.019475t* 4 0.000002¢%, (9)

where the unit is mas. Combining this and Eq.(8), we separate the secular part § into the
linear and nonlinear parts as § = gy, + qy,, Where

qp, = 12.9115694- 4612156.659865¢, (10)

and

Gnp, = 1391.542507¢* — 0.124849¢t° — 0.004991¢* — 0.000479¢°. (11)

3. RELATIONS AMONG UT1, GMST, AND ERA

The rotation matrix SAP is written in the post-2003 TAU formulation as (SNP)ngw =
R3(ERA — s)Q. Since the rotation matrix converting the z-axis of the ICRF to the CEO
must be the same both in the pre- and the post-2003 [AU formulations, we obtain the identity
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Rs(—$)Q = Ra(q)(NP)ngw. This means Sxgw = R3(ERA 4 ¢). Namely GASTngw =

ERA + ¢. This relation is separated into those of the secular and periodic parts, respectively, as
GMSTneEw = ERA 4+ 7, EENEwW = Ag. (12)

Since the ERA is a linear function of UT1, we split the secular part further as
(GMSTNEw);, = ERA + 71, (GMSTNEW N1, = ONL- (13)

where the subsript L. means the linear part and NL does the nonlinear one. We have already
obtained the nonlinear part and the periodic part in the previous section.

Now that the relation between the ERA and GMST become clear, there are two ways to
fix their relations with the UT1; determining the ERA-UT1 relation first or the GMST-UT1
relation first. Here we take the latter aproach.

Since the nonlinear part is already obtained, we determine the linear part of the GMST-UT1
relation. As was recommended in the TAU 2000 Resolution B 1.8 adopted at the Manchester
General Assembly, the continuation of the UTI1 in its value and rate must be kept at the
transition. Since the polar motion part is unchanged, the condition of continuation is written
in the matrix form as

(SNP)IERSI997 = (SNP)NEW (14)

where the relation must hold in the value and its rate at a certain time. Here the matrix with
the subscript IERS1997 is realized by the International Earth Rotation Service (IERS) since
1997.

(SAP)igrs100r = SosNoss Pa, (15)

This is different from the genuine form in the pre-2003 IAU formulation
(SNP) 1976 = SaNaPa, (16)

in the sense that the observed corrections in the nutation, §¢ and d¢, are added in the sidereal
rotation matrix and the nutation matrix as

Sops = R3 (GAST A + dtpcosen), (17)

and
Nops = R1 (—ea — Arave — 0¢) Ry (—Apauth — 69) Ry (€a) (18)

where Py is the precession matrix of Lieske et al. (1977) and Apaut and Ajaye are the AU
1980 nutation.

This convention means that the correction of the precession rate, Ap, of around 3.0 mas/yr,
which has been realized by a linear drift in the observed corrections ¢, has been already
taken into account in determining the UT1 by the IERS 1997 procedure even in the pre-2003
IAU formulation. Therefore, when the precession formulae are replaced by the latest ones
including the precession correction, the resulting new GMST-UT1 relation must contain the
direct contribution of the precession correction. In other words, the numerical coefficients in
the linear part of the GMST-UT1 relation would change roughly the same as Apcoseg ~ 2.7
mas/yr when the new precession formulae are applied.

In the previous work (Fukushima 2003), we determined the equinox correction F so as to
satisfy the condition

NossPa = Rs(E) N P)ygw - (19)

The amount of the equinox correction is as small as

F = (452.403 4 1.452 t) mas = (+0.00349353 4+ 0.00009680 ¢) second, (20)
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where ¢ is the time since J2000.0 measured in Julian centuries and we reserved superfluous
number of digits after the unit conversion for a later use. See Eq.(39) and Table 2 of Fukushima
(2003). Then the above condition of continuation is translated as

GAST, + (5¢) cosey = GASTNEw + E. (21)

Since §1) is observbationally determined, this relation must be regarded as a relation to be held
in average. In other words, the unknown linear term of GMSTngw is determined from the
observed &1 by a method of weighted least squares. To do this, let us define the quantity

AEE = EE, + (5¢) cosepn — EENEW. (22)

By conducting a method of weighted linear least squares, we determined the best linear function
fitted to the data as

(AEE), = —(11.822 4 0.011) — (276.542 + 0.187) 7 (23)

where the unit is mas and 7 is the time measured since J1990.0 in Julian century. This is
rewritten in terms of ¢ measured since J2000.0 in Julian century as

(AEE); = (—38.476 — 276.542 t) mas = (—0.0025651 — 0.0184361 ) second (24)

where we dropped the uncertainties. The weighted rms of the obtained residuals is 0.55 mas.
Then the equation of continuation is rewritten in terms of the secular part as

GMST, (ohUT1) + (AEE), = GMSTxpw (ohUT1) 1B (25)

Let us compare the nonlinear part of the both sides. Since the estimated difference AFFE and
the equinox correction E have no nonlinear part, the difference in the nonlinear part is only that
in gy, It is as small as

(@x1)a — (@nL)npw = (5.017483 ¢% 4 0.031791 7 + 0.004999 ¢* 4 0.000543 t°) mas

= (0.00033449887 T3 + 0.0000021194 T¢; + 0.00000033327 T4 4 0.0000000362 TS) second.
(26)
After the unit conversion, we again kept more digits than being meningful for the later use. Let
us write the linear part of the new GMST as

(GMSTyNEw) (ohUT1) = A+ BTy, (27)

where A and B are the constants to be determined. Then, the equation to be fitted is rewritten
as

A+ BTy =GMSTy (OhUTl) + (AEE);, = E+[(@nL) 4 — @vu)new]

= 24110.5423514 + 8640184.7943331 Ty + 0.00033449887 T¢
+0.0000021194 T3 + 0.00000033327 T4 4 0.0000000362 17 (28)

If we write the right hand side formally as ), akT{}, then the condition of continuation is solved
as

A=Y (1-kalf, B=) kaTf! (29)
k k
where Ty is the time of fitting. Namely

A = 24110.5423514 — 0.00033450 T — 0.00000424 T — 0.00000100 T — 0.00000014 732, (30)
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B = 8640184.7943331 + 0.00066900 T§ + 0.00000636 T 4 0.00000133 732 + 0.00000018 77. (31)

Since the ERA is connected to the linear part of GMST, we obtain the relation between ERA
and UTT as a direct byproduct as ERANgw = A+ BTy — ¢;,. As another byproduct, we obtain
the ratio of rates of the universal and sidereal times as

1 (dGMSTNEW (OhUTl))

=1
'NEW = 1 56100 % 36525 dTo

=g +2.11993 x 10713 Ty +2.015 x 1075 TE +4.21 x 107 T3 + 5.7 x 1077 T8, (32)
where ro = 1 + B/3155760000.

4. CONCLUSION

By using our precession theory (Fukushima 2003) and nutation series (Shirai and Fukushima
2001), we confirmed that the accumulated precession and nutation in RA, ¢*, is a good approx-
imation of ¢. Then we transformed the differential equation of ¢ into that of 8¢ = ¢ — ¢*.
By integrating the transformed differential equation numerically, we obtained éq for the period
1900-2100. Third, by using a successive method of harmonic analysis, we decomposed the quan-
tity 8¢ into a low order polynomial and some periodic and mixed secular terms. By comparing
the manner of decrease of the approximation errors with respect to the number of terms, we
judge that §q is more suitable than s + XY/2 to specify the location of the CEO on the true
equator of date.

Then, by using thus-determined formulae of ¢* and 8¢, we determined the new formulas
relating Greenwich Apparent Sidereal Timte (GAST), Earth Rotation Angle (ERA), Greenwich
Mean Sidereal Time (GMST), Equation of Equinox (EE), and UT1 from the continuation con-
dition that the values and rates of UT1 determined by the pre-2003 IERS procedure and by the
new procedure are the same at a certain time of fitting. The resulting formulas are symbolically
expressed as

GASTNEw = GMSTNEw + EENEW, ERANgw = A+ BTy —7qp,,

GMSTNew = A+ BTy + Gni,s EENEw = (At) cos€+ A(dq) (33)

where g;, and Gyp, are the linear and the nonlinear terms of the secular part of ¢ given in the
above, respectively, and A(dq) is the periodic part of dq.
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