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ABSTRACT. VLBI observations for the last 25 years will be used for new revision of theInternational Celestial Referen
e Frame (ICRF), the International Terrestrial Referen
e Frame(ITRF) and the IERS Earth's Orientation Parameters (EOP) with the help of a new softwareQUASAR (Quantitative Analysis and Series Adjustment in Radioastrometry). The pa
kageQUASAR allows to 
ompute the residuals (O� C) a

ording to IERS Conventions (2003) andto analyze their by single-/multi-series or global adjustment using parametri
, sto
hasti
 anddynami
al models of data.1. GENERAL STATEMENTThere are approximately 2200 radio sour
es and 150 stations in about 5 million VLBI obser-vations that were 
urried out during last 25 years. The goal obje
tive is reanalysis of these datafor revision and extension of ICRF-Ext.1 and ITRF(VLBI) referen
e frames and 
orre
tion ofIERS(EOP)C04 referen
e series. The main 
omponents of this proje
t are following:a) Data base: all observation at global VLBI-network during 1979-2004.b) Theoreti
al foundation: IERS Conventions (2003) (M
Carthy, Petit, 2003) and Genaral-ized Least-Squares Te
hniques (Gubanov, 1997, 2001).
) Expe
ted results: new versions of ICRF, ITRF and IERS(EOP) series; proper motionof sour
e position due to 
hanging stru
ture e�e
ts; variation of base lines; parametrization offree 
ore nutation as sto
hasti
 pro
ess; re�ned luni-solar pre
ession and nutation terms; morepre
ise Love/Shida numbers, tidal phase lag; tropospheri
 wet-delay, its horizontal gradientsand mupping fun
tion; antenna o�sets, and atmospheri
 loading 
oeÆ
ients for all sites, et
.d) Period of realization: 2003-2005.e) Resear
h group: V.S.Gubanov, I.F.Surkis, Yu.L.Rusinov (IAA) and post-graduate stu-dents of SPbSU.f) Finan
ial support: grant No. 03-02-17591 of the Russian Foundation for Basi
 Resear
h.2. PACKAGE QUASAR: CONFIGURATION, TUNING AND CONTROLSoftware QUASAR was developed during 1998-2002 by Prof. V.S.Gubanov and Ph.D.I.F.Surkis with 
ollaboration of Dr. I.A.Veres
hagina (Kozlova) and Dr. Yu.L.Rusinov. Thedes
ription of astronomi
al redu
tions, data analysis te
hniques, appli
ation results and userguide have been published by these 
o-authors in IAA Communi
ations, No. 141{145, 2002.3



As is obvious from below 
ow diagram (Fig. 1) the programmed pa
kage QUASAR allowsto 
arry out single-series, multi-series and global solutions. As well seven di�erent methods foranalysis of diurnal sto
hasti
 signals may be used. The iteraton pro
ess 
an be realized withrespe
t to both unknown parameters and 
ovarian
e of signals.
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Figure 1: Con�guration of the pa
kage QUASAR.The main tuning and 
ontrol fun
tions are following: a) support and visualization of database; b) redu
tion of delay/rate measurements and 
al
ulation of partials; 
) 
orre
tion of lo
al
lo
ks diurnal trend to quadrati
 model; d) parametrization of 
ovarian
e fun
tion for all typesto
hasti
 signals; e) 
hoi
e of sto
hasti
 analysis te
hniques; f) 
ontrol of single-/multi-seriesor global solution pro
esses; g) estimation of all signals and session or global parameters; h)regularization of random parameters; i) iteration pro
ess; j) preparation of ICRF, ITRF andEOP 
orre
tions in the IERS formats.3. REDUCTION OF CLOCK TREND TO QUADRATIC MODELSometimes the quadrati
 model for daily 
lo
k trend was not a

eptable, be
ause of lo
alhydrogen masers have not been stable enough. For this reason the residuals (O � C) for allavailable VLBI observations were 
orre
ted using QUASAR graphi
 system. As a result, theRMS of 
lo
k sto
hasti
 
omponent is de
reased by 10 times. In all other respe
t these 
orre
teddata are not 
hanged pra
ti
aly. For example, this pro
ess is demonstrated on Figs. 2-5 for theNEOS-A 011106xe session.
Fig. 2 - The base line names for NEOS-A 011106xe session.4



Figure 3: Original residuals (O � C) after elimination of 
lo
k quadrati
 trends for all VLBIstations (left) and then after elimination of the phase breaks (right).

Figure 4: (O�C) residuals for Wettzell - Fortaleza (left) and Wettzell - Kokee baselines (right).

Figure 5: Redu
tion of Wettzell 
lo
k trend to quadrati
 model (left) and �ltration of all residuals(O� C) under "4-sigma" 
riterion (right).4. PARAMETRIC AND STOCHASTIC ANALYSIS TECHNIQUESThe diurnal variable parameters (DVP) may be analysed by seven di�erent te
hniques: a)Multi-Parameter Least-Squares (MPLS), b) Multi-Group Least-Squares (MGLS), 
) MovingLeast-Squares Filter (MLSF), d) Global Least-Squares Collo
ation (GLSC), e) Kalman Filterof Markov's Pro
ess (KFMP), f) Kalman Filter of Random Walk (KFRW), g) Two-DimensionKalman Filter (TDKF).The �rst two of them (MPLS and MGLS) are well known. They use the Least-Squares(LS) te
hniques and DVP representation showed in Fig. 6. As opposed to MPLS, the MGLSte
hnique have to do with a few fragmets (groups) of diurnal session duration of ea
h about 1hours. In general, the 
hange of DVP inside every group may be presented as bound 
onstrainedpolynomial trend (Gubanov, Kozlova and Surkis, 2002).5



Figure 6: DVP representations being used by MPLS (left) and MGLS (right) te
hniques.The MLSF te
hnique is given as following re
urren
e relations (Gubanov, 2001):x̂k;k+1 =Dk;k+1D�1k�1;k(x̂k�1;k �Kk�1;klk�1) +Kk;k+1lk+1;Dk;k+1 = (I�Kk;k+1Ak+1)(I�Kk�1;kAk�1)�1Dk�1;k;where (lk;Ak;Qk) are data for group number k = 0; 1; 2; : : :; lk is the ve
tor of (O�C)k residuals,Ak;Qk are the matri
es of their partials and 
ovarian
es, respe
tively; x̂k�1;k and Dk�1;k areestimates of parameters ve
tor and its a posteriori 
ovarian
e matrix derived from 
ombinedLS-solution for two pre
eding groups with numbers k � 1 and k; x̂k;k+1 and Dk;k+1 are similarsolution for next two groups k and k+1 (see left side of Fig. 7). The ampli�
ation matri
es arefollows: Kk�1;k =Dk�1;kA0k�1Q�1k�1;Kk;k+1 =Dk�1;kA0k+1(Qk+1 +Ak+1Dk�1;kA0k+1)�1:
Figure 7: DVP representation being used by MLSF (left) and GLSC (right) te
hniquesThe GLSC te
hnique deals with DVP representation in the form DVP = Ax + s, whereAx is diurnal polinomial trend and s is 
orrelated random 
omponent the auto-
ovarian
e ofwhi
h must be a priori known (see right side of Fig. 7). Preliminary analysis of NEOS-A VLBIdata (Gubanov, Surkis, Kozlova and Rusinov, 2002) shows that the normalized auto-
ovarian
efun
tions of wet and 
lo
k random 
omponents are very similar for all stations (see Fig. 8).Their pe
ularities and varian
es may be 
orre
ted by iteration (see Fig. 1).

Figure 8: Normalized auto-
ovarian
e fun
tions of wet (left) and 
lo
k (right) random 
omponetsfor ea
h NEOS-A stations after averaging by all session of observationsBeing averaged for all stations these 
ovarian
e fun
tions may be modeled by expressionq(�) = �2 n=2Xn=0 bn
os�n e��nj� j 
os(!n� + �n); (!0 = 0; �0 = 0); (1)6



where !n is 
y
li
 frequen
y of n-th 
omponent of 
ovarian
e fun
tion, �n > 0 { dampingfa
tor, bn { dimensionless 
oeÆ
ients su
h as Pn=2n=0 bn = 1, �n { phase under 
ondition j�nj �j ar
tan(�n=!n)j that provide the positive de�nite fun
tion q(�).The GLSC-te
hnique is developed in detail (Moritz, 1983; Gubanov, 1997). As far as apriori information about unknown parameters and random signals is used in this te
hniqueGLSC-estimates are the most pre
ise and reliable then some kind of other linear estimates.Serious diÆ
ulties arising from inversion very large matrix in analysis of VLBA, Bb023 andother programs may be eliminated by sharing their sessions onto several sub-sessions.If a priori exponential auto-
ovarian
e fun
tion or, at last, its leading segment are known thenthe KFMP te
hnique may be used for analysis of Markov's pro
ess. However, GLSC-analysisof VLBI data shows that the mean values b0 in expression (1) for wet and 
lo
k sto
hasti

omponents are not ex
eed 0.1 so that one-dimension Markov's pro
ess is not representative forthese signals. In an opposite way the KFRW te
nique have not to do with a priori 
ovarian
eand, therefore, is very popular. In this te
hnique the transition matrix is equal of unit-matrixand KFRW-solution provides non-stationary random walk identi
al of Brownian motion.The TDKF te
hnique is more a

eptable from theoreti
al and pra
ti
al points of view(Gubanov, Kozlova and Surkis, 2002). It is known that if some stationary random pro
essu(t) have 
ontinuously derivative v(t) = du=dt, two-dimension pro
ess z(t) = (u(t); v(t)) isMarkov's one. In this 
ase the dis
rete dynami
 system perturbed by "white" noise w(i) provesto be form z(i+ 1) = �(i+ 1; i)z(i) + w(i)with the transition matrix�(i+ 1; i) = � quu(�i) quv(�i)qvu(�i) qvv(�i) � � quu(0) 00 qvv(0) ��1 ;where auto-
ovarian
e fun
tion quu(�) is de�ned by (1), quv(�) = �qvu(�) = dquu(�)=d� ,qvv(�) = �d2quu=d�2 and quu(0) = �2, qvv(0) = �2Pn=2n=0bn(�2n + !2n).5. STOCHASTIC REGULARIZATIONSto
hasti
 regularization is taking into a

ount of a priori auto-
ovarian
e of unknown ran-dom parameters in LS-solutions. Let we have the linear system l = Ax+ r where l is (O� C)residuals, A { the matrix of partials, x̂ { the ve
tor of 
orre
tions to referen
e systems su
h asICRF, ITRF or EOP and r { the random ve
tor of observation errors with known auto-
ovarian
ematrix Qrr. The LS-te
hnique using prin
iple r0Q�1rr r = min: leads to normal system Wx̂ = hand its solution x̂ = W�1h. A

ording to Fisher's theory of information (Gubanov, 1997) thematrix of normal system have to 
ontain the total amount of information on ve
tor x both aposteriori and a priori ones. In 
onsidered 
ase the matrix W = D�1xx presents only a poste-riori information deribed from LS-solution. However, if the ve
tor x is the 
entered randomset or sequen
e and its a priori information R = Q�1xx is known the more pre
ise regularizated
orre
tions x̂R may be obtained by relationx̂R = (W +R)�1h (2)that should be also from Generalized Least-Squares (GLS) prin
iple r0Q�1rr r+ x0Q�1xxx = min:The relation (2) is equivalent to the follows:x̂R = (W +R)�1Wx̂; (3)x̂R = Qxx(Qxx +Dxx)�1x̂: (4)7



It is easy to see that the eqs. (3) - (4) represent the generalized weighting and LSC-�lteringof LS-solution x̂, respe
tively (Gubanov, 1997). In order to the estimates x̂R were found asunbiased the errors of revised referense systems x have to be 
entered random sets or sequen
es.To this obje
tive the parameters of their systemati
 errors must be in
luded to 
ommon ones inpro
ess of multi-series or global solution (see Fig. 1).The regularization leads to de
rease the 
orre
tions x̂R and their a posteriori varian
es. Ifwe have pre
ise referen
e systems and rough or not enough observations this e�e
t may be veryessential. On the 
ontrary, it be
ome negligible. In fa
t, the pre
ise referen
e system 
an notbe improved by using of poor observations.6. PRELIMINARLY RESULTS OF NEOS-A DATA COLLOCATIONThe results demonstrated at Figs. 9 - 10 may be 
onsidered as the proof of this that theGLSC-estimations of wet-
omponent of troposperi
 path-delay are real.

Figure 9: Regression of GLSC-estimates of diurnal wet-delay, wet-rate, wet-signals and 
lo
k-signals (from left to right) for NRAO20 and NRAO85 stations lo
ated at the same site of NRAOby GLSC-analysis of simultaneous observationsThese data shows that the atmosphere over NRAO20 and NRAO85 stations is pra
ti
aly
ommon but their 
lo
ks are di�erent.

Figure 10: The Onsala total zenith wet-delays in
luding sto
hasti
 
omponents derived byGLSC-analysis from six last sessions of CONT94 program shared ea
h onto two sub-sessions(thin and thi
k lines) in 
omparison with WVR-measurements (
ir
les).We 
an see from Fig. 10 that the GLSC-estimates are not only realiable as they are inagreement with independent WVR-data but also very similar for shared sub-sessions.Further, the regularizated 
orre
tions of both the ICRF-Ext.1 
atalogue and IERS(EOP)C04time-series are demonstrated in Fig. 11. A priori un
ertainties of sour
e positions was taken from8



the prefa
e of ICRF-Ext.1 
atalogue (Gambis, 1999). Analogous values for IERS(EOP)C04 are
ontained in any IERS Annual Report.
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Figure 11: Corre
tions (up to down) of ��� 
os Æ, ��Æ 
os Æ, �Æ�, �ÆÆ, � sin �, ��,�(UT1�UTC), �xP and �yP .At present the software QUASAR is ready for global analysis of any amount of VLBI observa-tions by means of GLSC-te
hnique. In what follows the testing and tuning of alternative MLSFand TDKF te
hniques and introdu
ing of new tranformation from TRS to CRS are needed.7. REFERENCESM
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