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ABSTRACT. We present a general procedure to determine up to the order 1/c* the relativis-
tic influence of the mass and spin multipoles on the time transfers and the frequency shifts
in the vicinity of an isolated, axisymmetric rotating body. This procedure is applied within
the Nordtvedt-Will parametrized post-Newtonian formalism. We give explicit formulae for the
contributions of the mass, of the quadrupole moment and of the angular momentum of the
rotating body.

1. INTRODUCTION

The art of ultraprecise timekeeping is rapidly progressing. The laser-cooled atomic clock
PHARAO scheduled to fly on the International Space Station (ISS) in 2006 or 2007 is expected
to stick with an accuracy of 10710 (ESA/ACES mission). The NIST/NASA/JPL, PARCS ex-
periment scheduled for launch in 2007 is projected to enter the 5 x 1077 accuracy range. And
new kinds of optical clocks extracting time from calcium atoms or mercury ions are expected to
reach an accuracy of the order of 107!® in the foreseeable future.

At a level of uncertainty about 10~'8, a fully relativistic calculation of the time and frequency
transfers must be performed up to the order 1/c¢* within the post-Newtonian formalism. We
present here the results that we have recently obtained at this order of approximation for an iso-
lated, axisymmetric rotating body having a stationary gravitational field (Linet and Teyssandier
2002, denoted by LT (2002) in what follows). The problem is treated within the Nordtvedt-Will
parametrized post-Newtonian (PPN) formalism (Will 1993). It seems that in the previous works
devoted to the time and frequency transfers between a satellite and the ground, the calculations
were carried out only up to the order 1/c®, in the narrow context of general relativity (see
Blanchet et al. (2001) and Refs. therein).

Our procedure gives means of determining the contributions of all the mass and spin multi-
poles of the rotating body. We obtain explicit expressions for the contributions of the mass, of
the quadrupole moment and of the angular momentum. The numerical estimates are performed
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for a photon emitted from a satellite A orbiting at the altitude h = 400 km and received by a
terrestrial station B.

2. THE WORLD FUNCTION

We use the method of the world function (Synge 1964), which presents the great advantage
to spare the trouble of solving the differential equations of light rays. So we recall the definition
and the fundamental properties of this function. Spacetime is assumed to be covered by a global
quasi-Cartesian coordinate system () = (2%, &), with 2° = ¢t. The metric is denoted by g,
The signature of the metric is —2.

Consider two points x4 = (cta,xa) and xp = (ctp,xp). If these points are close enough
to one another, they are connected by a unique geodesic path I' 4. The world function is the
two-point function Q(x 4, xp) defined by

Qeaz5) = gean [sanl® (1)

where s 4p is the geodesic distance between x4 and zg and e, = 1,0, —1 according to whether
I' 4p is a timelike, null or spacelike geodesic, respectively.

The world function has the following properties.

i) In a vacuum, a light ray is a null geodesic of the metric g. As a consequence, two points
x4 and xp are linked by a light ray if and only if the condition

Qza,xp) = Qcta,xa,ctp,xp) =0 (2)

is fulfilled. Solving this equation for tp yields the travel time tg —t 4 of a photon emitted at x4
and received at xp as a function of t4, x4 and g : tg —t4 = T (ta, x4, xp). This function is
called the time transfer function.

i1) Let 2 4 and x5 be two points connected by a null geodesic I' 4 5. The covariant components
of the vector p* = dz®/dX tangent to I'4p, respectively, at x4 and xp are given by

Pa)A = gaﬁd)\ A* 8-’5%’ Pa)B = gaﬁd}\ B78x%’

where X is the unique affine parameter along I' 4 such that A4 =0 and A\g = 1.

Thus, if Q(z4,zp) is known, it is possible to determine the frequency shift between =4 and
zp. Indeed, let v4 be the proper frequency of a photon as measured by an observer A at x4
moving with the unit 4-velocity u§ = (dz®/ds)4 and vp be the proper frequency of the same
photon as measured by an observer B at zp moving with the unit 4-velocity u% = (dxz®/ds)p.
The frequency shift v4/vp — 1 is given by the well-known formula

v u
AL M 1. (4)
VB up (pa)A
In what follows, we suppose that the light rays are propagating in a stationary gravitational
field generated by an isolated, axisymmetric rotating body. The coordinates are chosen so that
the metric does not depend on . Then the world function is of the form Q(z% — 2%, x4, zp)

and the travel time of a photon propagating from x4 to xp may be written as
tB—tA:T(.’IJA,CDB). (5)

If the time transfer function 7 (x4, xp) is known, it is easy to determine the frequency shift
between A and B since it can be shown that Eq. (4) reduces to

O 1 . T
YA _q_ta, _H 04 VauT (6)
VB uy 1 —wvp-Vg,T
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where v4 = (dx/dt)4 and v = (da/dt)p are the coordinate velocities of the clocks comoving
with A and B, respectively.

3. TIME TRANSFER AND FREQUENCY SHIFT

The center of mass O of the rotating body is taken as the origin of the coordinates (x),
Oz? being both the axis of symmetry and the axis of rotation. The angular momentum of the
body about Ox? is denoted by S. The unit vector along the z3-axis is denoted by k. We write
S = Sk. Weput r =|x|, r4 =|xal|, B =|2p|. We denote by r. the equatorial radius. We call
0 the angle between x and k. We denote by v, the velocity of the center of mass O relative to
the universe rest frame.

With a convenient choice of coordinates, the PPN metric may be written in the form

goo = 1f%W—Fi—fWQ—I—c%f(f,ag,ag,cl,...,gl)—I-O(G), (7)
{90} = C% [(7 +1+ ial)W + ial’vr W] +0(5), (8)
95 = — <1+2C_ZW>5ij+O(4)’ (9)

where f(&, ag, a3, (q, ..., (4) denotes contributions involving post-Newtonian parameters that we
do not take into account here and W and W are potentials which may be expanded in multipole
series of the form

W(x) = Gi” -3, (%)"Pn(cose)] , (10)
n=2
W)= 95 x2 [1 > () Pn',H(cosa)] (1)

in the region r > .

In these equations, the P, are the Legendre polynomials; M, Jo, ..., Jp, ..y S, ooy Ky, oo
correspond to the generalized Blanchet-Damour mass and spin multipole moments (Blanchet
1989, Damour et al 1991 , Klioner and Soffel 2000). Note that the coefficients K, in Eq. (11)
coincide up to 1/ c? terms with the spin multipole moments calculated by one of us (Teyssandier
1977 and 1978).

Putting Ryp = xp — x4 and Rap =|xp — x4 |, we have shown that the world function
Q(z 4,xp) may be written in the form

1 1
Veazp) = 5 (2% — 2%)? — R3] — = (2% — 2% + yRAp] W(za,zp)  (12)
2 1
+ 07(7 +1+ Zal)(m% —2%)Rap - W(za.Tp)

—

+ 2—030(1(.%% — -T%)(RAB - ’UT)W(:BA,:DB) + 0(4) ,

where W(x 4, xp) and W(x 4, zp) are given by the following multipole expansions when r > r:

o 1 " o
W(za.z5) = GM 1725%%% Flx,zA, xp) o (13)
W( )= Lasx v ilK A ) (14)
TA,LB) = 9 it n! nTe 9z L, TA,TB :B:Oa

253



the kernel function F(x, x4, xp) being defined as

1 ln(|a:asA|+|a:asB|+RAB)

F —
weaen) = g™ (o aa [+ (o 5| Fas

(15)
These formulae show that the multipole expansion of €(z 4, zp) can be thoroughly calculated
up to the order 1/¢* by straightforward differentiations of the kernel function given by (15). Note
that integral expressions of W and W valid everywhere are also given in LT (2002).
We have shown that the time transfer 7 (x4, ) and its multipole expansion can be explicitly
calculated up to the order 1/c* when Q(z4,zp) is known up to the order 1/c®. In the present
communication, we retain only the contributions due to M, J, and S. Thus, putting

nA:iE_A’ nB:iE_B’ NAB:M, (16)
TA TB Rap
and using the identity (14 +75)? — R4 = 2rarg(l+mn4 - np), we get
1
T(xa,xB) = ERAB +Tu(xa, ) +Tr(xa, ) + Tg(Ta, ) + Tv, (TA, TB) + -+,
where
GM R
Tu(aaan) = (-+1) G (AZ2ER) (17)
c ra+1rp— Rap

1 GM 2 1 1 . ) 2
TIQ(ZBA,CUB):*’Y—F GM Jor? Rup [( > (k-na+k-np)

2 A3 rargp 14+ mn4-np a E 1+n4-np
(kxmna)® (kxmnpg)?

- - | (18)

TA B
1 GS[1 1\ k- (ngxng)
Ta(@a,x5) = —(v+ 14 -a1) 22 [ — 4 — | 2 \Ra X BB) 19
g(xa,xp) (v+ +4a1) C4 <7'A+7"B> [y (19)
GM rA+ 1B+ Rap
T, — o 2 (Nap v ] . 20
v, (@4, ®p) = —a1 5 (Nap - vr) n(rA+rB—RAB) (20)

The term of order 1/c® given by (17) is the well-known Shapiro time delay. Equations (18)
and (19) extend results previously found for v = 1 and a3 = 0 (Klioner 1991, Klioner and
Kopeikin 1992 ; see also, e.g., Ciufolini et al 2003 and Refs. therein).

Using Eq. (6) and Egs. (17)-(20), it is possible to perform the calculation of the ratio v4/vp
up to the order 1/ ¢* if the terms of the same order in ggy are taken into account. For the sake
of simplicity, we henceforth confine ourselves to the fully conservative metric theories of gravity
without preferred location effects, in which all the PPN parameters vanish except § and ~.
Since the gravitational field is assumed to be stationary, the chosen coordinate system is then
a standard post-Newtonian gauge and the metric takes its usual post-Newtonian form (Klioner
and Soffel 2000). Then, retaining only the contributions due to M, Jo and S in the terms of
orders 1/c¢? and 1/c*, we have found that the frequency shift v4/vp — 1 may be written as

a =) (0), o)
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where (dv/v). is the special relativistic Doppler effect given by

ov 1 111 1
(%) = - Livan(oa—on]+ 5 [—vi ~ 5% Nan- (04— vn)l(Nan-v5)
v/, c 2 2
1
_C_S[NAB VA —VB) [ vB—i-(NAB 'UB)2] (22)
" 0—4{ gUAT 3B TR

~Nap- (o4 o)(Nap-vs) | 504 5ob+ (Na-0n?] |+ 069

and (dv/v), is the gravitational part given by

P 1 1 /60\® 1 /60\® 1 /6\® 1 /oW
(f) =g Wa-Wn)+ 5 (‘) ta <—> T (—> T <—> T
g M Jo M S

the different terms belng separately made explicit and briefly estimated in what follows.
The term ((5u/1/) due to the mass reads

s\ @ 11 +1 -
()] - (e 2) (-2 o
v )u TA TR l+nas-mp ra-+rp

Rap my-va+mnp-vp
+(y+1 : 23
¢ )TA+TB I+ny-npg } (23)
With K4p defined as
2
TA—TB
Kuap = 7( ) (24)
TATB
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the term ((51//1/)9? may be written as

<5_V>(3) _ GMJQ[NAB.(UAfUB)] [<T_e>3[3(k-nA)21]<r—e>3[3(k-n3)21}]

V) 2re TA B
Y4+ 1 GM Jor2(ra +1B) 1
+ 3.2 2
2 TATS (1+n4-np)

25—3nA-nB+2KAB
1+ny-npg

x{ (Nag- (04— vs)] [(k matkenp)

_ (1 B TA(k . TLB)2 +TB(k . ’I”LA)2
r4a+rB

)@—nmn3+Kﬂﬂ

Rap 97 —mng-np+2Kap
. . k. k-
TA—H“B(nA va+np-vp)k-na+k- -np) [Eey——
Rap 9 TA+TB(2+TLA-RB)
- : 1 3(k-
TA (4 UA)[ (k=) ] rA+TB
Rap 9 TA(Q-I-TI,A-TLB)—I-T‘B
— ‘ 1—3(k- 25
- (np-vp) [1-3(k-np)?] S (25)
+RaB |:2 (TLA' 04 + nB.UB) (knA)(k;nB)
TA 3]
1—(k-np)? 1 (k-m4)2
_(nA'UA)M—(nB'UB)M}
B TA
2 i
72RAB(k.vA) |:k.nA7“A+7"B( +mny nB)—I-k-nB}
TA rA+TB
2 .
72RAB(k.vB) [k-nAka-nBrA( +mny nB)—I-TB] }
B rTA+TB
A crude estimate for the ISS shows that if v = 1, then
3)
% (6—”> < 1.3x10716. (26)
A\v /)y,

So, it will perhaps be necessary to take into account this effect of Jo in ACES or PARCS
experiments. However, a lower bound will be found if the inclination of the orbit of the ISS and
the latitude of the terrestrial station are taken into account.

At the order 1/c?, the contribution of the mass is given by

<&>w (7+M(GM'2 GM2>_1GM@A@)

2 2
27
y VA - Vg 5 s (v — vg) (27)

“am (L DY [(2UED T N (os - va)(Nap v

M

TA TR l+mnyg-ng r4+rp
v+1 Rap
l4+ng-ngpra+rp

2
; <GM> [(ra—rB)?+2(8—-1)(r% —rp)] -

{(na-va)(Nap-vp)—[Nap-(va—2vp)|(ng-vp)}

2

TATB

The dominant term (v + 1)GM/rav% in (27) induces a correction to the frequency shift
which amounts to 1078, So, it will certainly be necessary to take this term into account in
experiments performed in the foreseeable future.
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Finally, the term 0*4(5u/u)(§,) due to the angular momentum is

(6—V>(4) = (v+1) G5 vA-{<1+T—B>&T—B(anA)

v)s TATB ra) 1l4+mna-np 14

k- (naxmnp) {<1+:—j(2+m-n3)) na+ <1+T—B) nBH (28)

(1+mn4-np)? TA
(v +1) GS UB.{(lJrT_A)M_T_A(kan)

TATB TB 1+’I’LA"I’LB B

_ k- (na xns) {<1+:—2(2+n,4-n3)>n3+<1—|—T—A>n,4}}.

(14n4-npg)? TR

Taking for the Earth S = 5.86 x 1033 kg m? s~!, we obtain the inequality

1 /s \W
ot <7> S

Thus, our formula confirms that the effect of the angular momentum of the Earth on the
frequency shift will not affect the ACES or PARCS experiments.

< (y4+1)x 1071, (29)
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