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ABSTRACT

The free motion of an elastic body can be obtained from that of a rigid one with the same
parameters, but by taking into account the variations of the components of the tensor of inertia
with respect to the time.

We show how this way of computation, constructed either from the classical equations for the
angular momentum or from Hamiltonian theory as well, leads to some interesting contributions
to the polar motion, depending on the elasticity and the triaxial form of the body (for instance
the Earth), to be added to some classical ones, as the presence of the Chandler wobble.

1. INTRODUCTION.

The torque-free rotational motion, sometimes called the Fuler-Poinsot problem, of a body
corresponds to that in which the torque exerted by the Sun and the Moon is neglected. The
formulation of the corresponding equations of such problem for elastic body can be expressed
into two different ways:

e In terms of the rectangular components of the angular velocity vector, by considering the
classical Liouville equations, and

e In terms of Andoyer’s variables (L, G, H) and its canonically conjugate variables (I, g, h),
by using Hamiltonian mechanics.

Motivated by Kubo’s procedure (1991), which applied Hamiltonian mechanics to the pro-

blem of the free motion of the elastic Earth, we undertake an extension of his study considering
an axially body instead of a body with rotational symmetry.
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2. EXTENSION OF KUBO'S PROCEDURE: VARIATIONAL EQUATIONS.

In this section, we will generalize the equations of the torque-free rotational motion of a rigid
body in terms of the Andoyer variables as discussed in (Souchay et al., 2002), to the case of a
deformable body. The Hamiltonian for the free rotation (which is equal to the kinetic energy)
in this case has the form (Kubo, 1991):

_ 1 .2 2 2 12 2
= 2ABC{[BCS]DZ+ACCOS l}(G L?) + ABL
— COF(G? - I)sin2l — 21./G2 12 [BEsinl + AD cos z} } (1)

where, A, B and C are the moments of inertia and D, E and F' are the products of inertia
of an non-rigid body with respect to the Tisserand axes (A = Ayp + AA, B = By + AB and
C =Cy+ AC, with (Ag, By, Cy) corresponding to a rigid axially body).

If the elastic body rotates about an axis which deviates from the axis of symmetry of the
body, then centrifugal forces tend to distort it and therefore this distorsion originates variations
in the tensor of inertia. This effect is known as rotational deformation, which is the only one to
take into account in the study of the torque-free rotational motion of an elastic body. Periodic
variations in the tensor arising from rotational deformation are given by (Kubo, 1991; Souchay
& Folgueira, 2002):

AA = AB=AC=0
D = BCysinJ* cosl* = BCysinJ* cos(l + 9)
E = aCysinJ* sinl* = aCysinJ* sin(l + 9)
F =0 (2)

where the following notations were adopted:

k Co— Ag k Co— Ap
« A an 06 W B (3)
with, k£ is a Love number, kg is the secular Love number equals to % (k? denotes the

gravitational constant and a is the Earth’s equatorial radius). Following (Kubo, 1991; p.171), D
and £ should be considered only as functions of time. So, we have denoted J and [ in the above
expression as J* and [*. Numerically, they are equal to J and and [, respectively. J represents a
time lag between the rotational axis and the pole of the equatorial bulge due to the centrifugal
force, then, I* should be equal to I + 6 (6 > 0).

When these last expressions are substituted in the general expression of the Hamiltonian (1)
one obtains, neglecting terms of second and higher order:

1
= ———{[ByCysin®l + A 21 (G* = L?) + AyByL?
K QAUBOCO{[ 0Cosin“l + AgCy cos ](G )+ 0bo

— 2L\G? - L2 {aBOCO sin J* sinl* sinl + BAyCpsin J* cosl* cos l]} (4)
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Adopting the following notations:

- Ao+ Bo Ay — By
A = 5 and 87A0+Bo

the Hamiltonian (4) can be then rewrite as, in terms of A and &:

L
K = kBt - TV G? — L?sinJ* [a(l —¢e)sinl* sinl + [(1 +¢€)cosl* cos l} (6)

where K is the Hamiltonian of the torque-free motion for a rigid body with a triaxial form
(Souchay et al., 2002).

Variational equations:

Once we have obtained the Hamiltonian corresponding to the torque-free rotational motion
of an elastic body in terms of Andoyer variables (L, G, H,l, g, h), we can use the general Hamil-
ton’s equations of motion to establish the variational equations of the problem considered here
(Kinoshita, 1977):

d oK
a LG H) = 3.9, h)
d oK

which express the time variations of Andoyer variables in function of partial derivatives of the
Hamiltonian. Thus, the substitution of the Hamiltonian (6) in the previous expressions gives us
the following expressions for the temporal variations of Andoyer variables and the angle J:

dL
dt
ﬁ
dt
i
dt

L
= %GQ sin? J sin 21 + % sin Jsin J* [psind + 7sin(2] + 9)]

dl
dt
dg
dt

- _% <COA> - %LCOS2Z + %[pCOS(S — 7cos(2] + 9)]

L
Gcos2l — 1 [pcosd — Tcos(2l + )]

dh
dt
dJ

£ ., . . L . .. . .
il —ZGststl — Zst [psind + Tsin(2] 4 0)] (8)
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where,

[a(l —&) — B(1+¢)] (9)

N | —

a(l —¢) + (1 +¢)] and 7=

DO | =

To integrate this system of first order differential equations, we have used a fifth-order
adaptative stepsize Runge-Kutta-Fehlberg algorithm.

3. CONCLUSIONS AND APLICATIONS.

It should be worthy of noticing that this numerical approach provides not only a check on
some classical results from the analytical methods but it is particulary useful and effective in
obtaining the solution in a not so complicated way as that carried out using different approaches.

As the solution of this problem has a direct dependence with the principal moments of inertia
of the body, the torque-free rotational motion will therefore provide an useful material relating
to the behaviour of the body under a large-scale, and it may hence be of great interesting con-
nection with the investigation of slow changes in the figure of the Earth and any other celestial
bodies.
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