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1. INTRODUCTION

Prediction errors for a few days in the future of the pole coordinate data determined from
the new space techniques is several times greater than their determination errors, which are of
the order of 0.1 mas. The current prediction method of polar motion data carried out in the
IERS Rapid Service/Prediction Center is the least-squares extrapolation of a Chandler circle,
annual and semiannual ellipses and a bias fit to the last 1 year of the combined pole coordinate
data (McCarthy and Luzum 1991, TERS 2000). Previously, the length of polar motion data from
which this extrapolation model was computed was equal to three years however this increase
caused an increase of the mean polar motion prediction errors especially during the time of El
Nino events (Kosek et al. 2001a,b). Any improvements made to the polar motion forecast using
the autocovariance prediction procedures (Kosek et al. 1998, 2000) were not effective especially
in the time of the El Nino event in 1997/98. In this paper, the autocovariance and least-squares
prediction were applied to the pole coordinate data transformed into polar motion radius and
angular distance (Kosek 2002).

2. DATA

The analysis used the USNO pole coordinate data in the years 1973.0 to 2002.7 with a
sampling interval of 1 day (USNO 2002), the IERS EOPCO01 pole coordinate data in the years
1846.0 to 2000.0 with the sampling interval of 0.05 years and the IERS EOPC04 pole coordinate
data in the years 1962.0 to 2002.7 with the sampling interval of 1 day (IERS 2002). Additionally,
the monthly sea surface temperature anomalies Nino 142 and Nino 4 in the years 1976.0 to 2002.7
from the Climate Prediction Center (NOAA 2002) were used.

3. THE TERS LEAST SQUARES PREDICTION ERRORS

The distances between polar motion data and their least-squares predictions at different
starting prediction epochs from 1 to 50 days in the future are shown in Figure 1. The polar
motion data from which the extrapolation model of the Chandler circle, annual and semiannual
ellipses and a bias was computed was equal to one and three years. The increase of the length of
polar motion data going into the least-squares extrapolation model increases the polar prediction
errors (Kosek et al. 2001b). The reasons for these increased errors are irregular short period
oscillations of pole coordinate data (Kosek and Kolaczek 1995, Kosek 2000) as well as the phase
and amplitude variations of the annual oscillation (Kosek et. al. 2000, 2001a,b). The amplitude
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and phase variations of the Chandler and annual oscillations computed by the least-squares
method in one year and three year time intervals for the USNO x pole coordinate data are
shown in Figure 2. The amplitude variations of these oscillations computed from the y pole
coordinate are very similar (Kosek et. al. 2001a,b).
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Figure 1: The distances between polar motion data and their least-squares predictions computed
at different starting prediction epochs for the time span of polar motion data going into the least-
squares extrapolation model equal to one and three years (contour lines at 0.01 arcsec).
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Figure 2: The amplitude and phase variations of the Chandler and annual oscillations computed
by the least-squares method in the one (thin line) and three (heavy line) year time intervals and
the Nino 142 (heavy line) and Nino 4 (thin line) data.

The amplitudes and phases of the Chandler and annual oscillations become smoother when
the interval of data going into the least-squares extrapolation model becomes longer. The phases
computed by the least-squares using the three year intervals are smoother for the Chandler
than the annual oscillation. This means that poor accuracy of the least-squares polar motion
predictions are caused by irregular variations of the annual oscillation phases. The two biggest
maxima of the annual oscillation phase and amplitude preceded the two biggest El Nino events
in 1982/83 and 1997/98 by about 1.5 and 0.5 years, respectively. The increase of the phase and
amplitude of the annual oscillation in the year 2000 suggests that another El Nifo is expected in
the end of this year. The Nino 4 index corresponding to the sea surface temperature difference
in the central Pacific has already begun to increase.

126



4. TRANSORMATION OF POLE COORDINATE DATA BETWEEN CARTESIAN
AND POLAR COORDINATE SYSTEM

In order to transform pole coordinate data from the Cartesian to the polar coordinate system
in which the polar radius is stationary we must refer the pole coordinate data to the mean pole
positions. The radius and angular distance are computed by the following formulae:

R, = \/(wt—:r?"‘)2+(yt*y§”)2., t=1,2,...,n (1)
Le = V(@ —a1)?+ W —w—)? t=1,2..n (2)

where: z,y; are the pole coordinates data and xj",y;" are the mean pole coordinates data.

The transformation from the polar into the Cartesian coordinate system is carried out when
the first predictions of the radius R, and angular distance L, .1 are known. Time-frequency
amplitude spectra computed by the Fourier transform band pass filter (FTBPF) of the complex-
valued pole coordinate data show that the amplitudes of oscillations with positive periods are
bigger than the amplitudes of oscillations with the negative ones which indicates that oscilla-
tions in polar motion are mostly counterclockwise (Kosek 1995). Assuming, that polar motion
is counterclockwise, the coordinates of the first prediction point are computed by the linear
intersection formulae (Fig. 3) :
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where P is the area of the triangle shown in Figure 3.

xn+i‘h?n+1

P In+:

R.)

W
Tn o P &Q xrz ’-yn
rrean pole

Figure 3: Linear intersection - computation of the first prediction point from the prediction of
the radius and angular distance

5. PREDICTIONS OF THE MEAN POLE, RADIUS AND ANGULAR DISTANCE

In order to compute predictions of the radius and angular distance the autocovariance (Kosek
1993, 1997) and least-squares prediction methods were applied. It has been shown that the
autocovariance prediction of the model pole coordinate data similar to the observed polar motion
data does not predict these data as accurately as the forecast computed from the predictions of
the radius and angular distance (Kosek 2002).

One of the problems in polar motion prediction through transformation of pole coordinates
into a polar coordinate system is the determination of the mean pole and its prediction. The
mean pole coordinate data were computed by the Ormsby (Ormsby 1961) and Butterworth
(Otnes and Enochson 1972) low pass filters (LPF) with the cutoff period of 18 and 7 years,
respectively. The Ormsby LPF cuts off the beginning and the end of time series outputs due
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to filter length by 3 years, so in order to have the mean pole positions at the end of time series
they must be predicted. Three-year least-squares predictions of the mean pole computed at
different starting prediction epochs are shown in Figure 4. The agreement between the mean
pole coordinates and their predictions is good and of the order of the differences between outputs
of the different LPFs. The systematic difference between the mean pole and its prediction will
produce an oscillation with a period approximately equal to one year in the computed polar
motion radius (eq. 1). The radius and angular distance computed from the EOPCO01 extended
by the EOPCO04 pole coordinate data are shown in Figure 5. The reason for longer period
variations in the polar motion radius is the variable amplitude of the Chandler oscillation (Schuh
et al. 2001). Time-frequency amplitude spectra computed by the FTBPF of the polar motion
radius and angular distance show that the beat period of the Chandler and annual oscillations
is not constant. Since 1960s the oscillation with a period equal to about 3 years can be seen
as a beat period between the semiannual and semi-Chandler oscillations (Kosek and Kolaczek

1997).
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Figure 4: Three-year least-squares predictions computed at different starting prediction epochs
(heavy line) of the mean pole computed by the Ormsby LPF (thin line) and the mean pole
computed by the Butterworth LPF (dashed line) and by the IERS (dots) (IERS 2002).
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Figure 5: The radius and angular distance computed from the IERS CO01 pole coordinate data.
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Figure 6: Time-frequency FTBPF amplitude spectra of the polar motion radius and angular
distance.
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The beat period of the Chandler and annual oscillations computed from the minima and
maxima of the polar motion radius and angular distance is shown in Figure 7. The beat period of
the Chandler and annual oscillation can be also computed from the least-square phase variations
Ay of the Chandler and annual oscillations shown in Figure 2. The change of the period AT of
the Chandler or annual oscillations can be computed from the change of the their least-squares
phase variations Ay according to the formula:

2t /T 4+ ¢ + Ap = 2tn /(T + AT) + ¢ = const (4)

The beat period of the Chandler and annual oscillation can be computed from variable
periods of these oscillations according to the following formula:

1/ Theat = 1/(Tan + ATay) —1/(Ten + ATcy) (5)

Since the Chandler phase is not fixed in time a robust method (Priestley 1981) was applied
to eliminate its drift before the change of the Chandler period AT,;, was computed.

One-year autocovarince and least-squares predictions of polar motion radius and angular
distance computed at different starting prediction epochs agree well with the future data (Fig. 7).
In the least-squares prediction the beat period was equal to 6.1 years in the extrapolation model
and this model shows a good agreement with the future data only from 1995 to 1998. Outside
this time interval, this beat period does not have an appropriate value in the extrapolation
model.
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Figure 7: The beat period of the Chandler and annual oscillations computed from the smoothed
minima and maxima of the polar motion radius (crosses) and angular distance (dots) and com-
puted from the least-squares phase variations Ap of the Chandler and annual oscillations
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Figure 8: Ome-year autocovarince and least-squares predictions (heavy lines) of polar motion
radius and angular distance (thin lines) computed at different starting prediction epochs.

The distances between the pole coordinate data and their autocovariance predictions com-
puted at different starting prediction epochs are shown in Figure 9. The prediction errors depend
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Figure 9: The distances between polar motion data and their autocovariance predictions com-
puted at different starting prediction epochs (contour line at 0.01 arcsec).

on starting prediction epochs but they are not as big as the predictions carried out by the IERS
Rapid Service/Prediction Center (Fig. 1) especially for short prediction times.

5. CONCLUSIONS

Polar motion least-squares prediction errors depend on irregular phase and amplitude vari-
ations of the annual oscillation that had maximum values before the El Nino events in 1982/83
and 1997/98. The increase of the annual oscillation phase and amplitude in 2000 indicates that
another El Nino is expected in the end of this year.

Transformation of pole coordinate data from the Cartesian to a polar coordinate system
transforms the Chandler and annual as well as the semi-Chandler and the semiannual frequencies
into their beat frequencies which helps to solve the frequency resolution problems. Accuracy
of polar motion prediction by the method of autocovariance through the transformation to
polar coordinate system depends on predicting accurately the mean pole, radius and angular
distance. The period of the most energetic oscillation in polar motion radius and angular distance
representing the beat period of the Chandler and annual oscillations is variable mainly due to
variable phase or period of the annual oscillation.

The error of the autocovariance prediction for a few days in the future is less than the predic-
tion error of the current polar motion forecast carried out by the IERS Rapid Service/Prediction
Center.
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