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ABSTRACT. By means of the Hamiltonian theory of the rotation of the non rigid Earth, we
have obtained explicit expressions of the torques exerted by the fluid on the solid layers of a two
and three layer Earth models as functions of the canonical Andoyer variables. When rewriting
these formulae in terms of the components of angular velocities and symmetry axes of the layers,
the transformated expressions are the same as those derived by other authors using different
methods. Anyway, here the derivation is obtained in a much more simple way without the
concurrence of Hydrodynamics equations.

1. INTRODUCTION

The determination of the rotational motion of a celestial body around its barycenter is one
of the most important problems in Celestial Mechanics. This relevance is stressed if the celestial
body is the Earth. The reason is clear: the accurate knowledge of Earth rotation is fundamental
to tackle the definitions and realizations of space and time reference systems.

The Earth rotation problem can be studied by applying different approaches. One of them
is based on the application of the Variational Principles of Mechanics, that is to say, the es-
tablishment and resolution of the problem is performed in the context of Lagrangian (Lagrange
equations) or Hamiltonian (canonical equations) frameworks. At the beginning of the XXth
century this line was followed by Poincaré (1910) and Andoyer (1923) when dealing with the
rotational motion of non-rigid and rigid Earth models. Later, there have been other investiga-
tions sharing this approach such as the works of Kinoshita (1977), Moritz (1982), Getino and
Ferrandiz (2001), etc. In the last years the rotational motion of a more sophisticated Earth
model composed of three layers (mantle, fluid outer core and inner core) is also being investi-
gated under this variational perspective by means of a Hamiltonian theory (e.g. Escapa et al.
2001) or with the help of Poincaré equations (Escapa et al. 2002).

A fact that must be underlined is that the resolution of the Earth rotation problem by means
of the Variational Principles of Mechanics is not only interesting from an academic point of view
but also from a practical one. Let us remember that the Hamiltonian theory of the rotation of
the rigid Earth (Kinoshita 1977, Souchay et al. 1999) is probably the most complete and precise
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theory for this kind of Earth model available nowadays. Likewise, the Hamiltonian theory by
Getino and Ferrandiz (2000) provides competitive rotational models for the non-rigid Earth.
On the other hand, the variational approach presents some advantages with respect to other
treatments based on the Vectorial Mechanics (e.g. Sasao et al. 1980, Mathews et al. 1991,
2002). In particular, the explicit computation of the torques exerted by the fluid on the solid
layers is avoided.

In this note we focus our attention in obtaining the interactions among the fluid and the
solid layers. Anyway, let us recall (Escapa et al. 2001, 2002) that in the variational context it is
not, necessary to know the explicit functional expression of these torques, since the equations of
motion are derived from the Hamiltonian or Lagrangian of the system. However, it is interesting
to have the expressions of the torques with a twofold aim: first, to gain some kinematical
and geometrical insight into the interactional mechanism among the fluid and the solid layers.
Second, to compare them with the expressions used in the vectorial approach which are obtained
by means of a cumbersome procedure involving Hydrodynamics equations.

2. VECTORIAL MECHANICS APPROACH

The Vectorial Mechanics approach is based on the general equation of angular momentum
conservation of a system

dL
— =N 1
dt ’ (1)

where L is the angular momentum of the system and IN the torque acting on it. Next, we
sketch the basic features of the way in which eq. (1) is applied to solve Earth rotation problems.
Specifically, we will consider the line followed by Sasao et al. (1980) and its generalizations.
Anyway, let us point out that there are other approaches (e.g. Wahr 1981) starting basically
from (1) that we will not treat in this note.

To model the rotational motion of the Earth it is considered one equation of the form (1)
for each layer of the Earth. Besides it is necessary to perform some additional considerations
that allows to tackle this complicated problem (see Kinoshita and Sasao 1989). One of the most
important simplification is to assume that the field of velocities of each layer is composed of a
dominant rigid-rotation term. So the angular momentum (rotational) of a layer has the form

L; =1, (2)

being II; the tensor of inertia of the layer and zo; its associated angular velocity (rigid-rotation
term) with respect to an inertial frame. This one is decomposed as

w,, is the associated angular velocity to the mantle. There are other possibilities to make this
decomposition, see Mathews et al. 1991, but these ones do not change the fundamental idea of
the method. In this way the equation (1) is written as

dL;
dt

+wmALi:Niout+Niint- (4)

The subscript 7 refers to the different layers (mantle, fluid outer core,...). We have described the
evolution of L; with respect to a frame (Tisserand frame) evolving with the angular velocity w,,,.
In addition, we have split out the torque acting on the layer in two parts: IN; ., is the torque
due to the interactions produced outside the Earth and IV;;,; is the torque produced inside
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the Earth. The equation referring to the variation of the angular momentum of the mantle is
substituted by one describing the behaviour of the whole Earth. Namely

d—L+wmAL:Nout, (5)
dt

with L = Y L;, Nyt = Y., Njout- To simplify the terminology we also refer to this equation
as the equation of a layer (the whole Earth). The internal torques do not appear in the above
formula because of Newton’s action reaction principle. Finally, to determine the rotational
motion of the Earth we have to add to the dynamical eqs. (4) and (5) a new set of relations
that involve the variables characterizing the Earth orientation, such as the case of the Euler
angles. These relationships mix the time derivatives of Euler angles with the components of
the angular velocities of each layer (see Escapa et al. 2002) and with (4) and (5) form the
fundamental system of differential equations whose solutions provide the rotational motion of
the Earth (precession, nutation and length of day).

In this framework it is possible to study the rotational motion of different Earth models.
First, we have to fix the number of layers of our model, that is to say to consider a one layer,
two-layer or three-layer Earth model. Second, we have to provide analytical expressions for
the quantities entering in egs. (4) and (5). Depending on the physical characteristics of the
model it will be necessary to consider different expressions for the tensors of inertia and for
the external and internal torques. For example, the external torques could take into account
the gravitational perturbations of moon, sun, etc. Some of the internal torques can be due to
dissipative processes happening in the interior of the Earth, the interactions of the fluid with
the solid layers (pressure torques), etc. Other characteristics of the Earth model, such as the
elasticity of the layers, can also be fitted in this scheme by performing some approximations
(Sasao et al. 1980).

The explicit expressions of the torques or tensor of inertia of each layer are derived following
different methods. For instance, the torques of gravitational origin (internal and external) are
obtained through a potential function; the dissipative torques are linear combinations of the
components of the angular velocities of the layers (Sasao et al. 1980). In the case of the pressure
torques the derivation of explicit expressions is more complicated. These expressions come from
the equations of fluid motion following a cumbersome procedure (Sasao et al. 1980), specially
in the case of a three layer Earth model (Mathews et al. 1991).

The next step in the development of this approach would be to solve the differential equations
of motion. The procedure followed is to use the so called transfer function method, which
essentially consists in taking advantage of the solution produced for a rigid Earth model. In
this way it is not necessary to work with the explicit expressions of the gravitational potential
of moon, sun and planets, although the method also presents some limitations (Escapa et al.
2002). This stage of the theory is out of the scope of this paper and will not be considered.

3. VARIATIONAL APPROACH
The Variational approach is based on consider the extremals of the variational problem

to
) Fdt =0, (6)
t1

where F'is a function depending on the system. Starting from this standpoint several methods
have been developed to treat the Earth rotation problem (Poincaré 1910, Moritz 1982, etc ). The
main approximations performed in the Vectorial approach (e.g. rigid—rotation field of velocities)
are also assumed in these methods. We focus our attention on the Hamiltonian formalism due
to Getino and Ferrandiz, giving a brief outline of the fundamentals of the method.
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In this context the equations of motion of a system with n degrees of freedom are derived
with the help of the Hamilton canonical equations

dp; oH dg; OH ,
~ P + Quii —, = Qpii=1,....n (7)

pi, q; are the canonical variables, momenta and coordinates, that describe the dynamical be-
haviour of the system. H is the Hamiltonian function: it is a sum of the kinetic, T', and potential,
V, energies of the system and ¢, are the generalized forces, necessary to model the dissipative or
non-conservative processes. When studying the rotational motion of a system there are several
possibilities to chose the canonical variables. One of the most useful is to employ the Andoyer
canonical set (or some variation of this set, Getino 1995a, b, Escapa et al. 2001) because of its
simplicity and the direct geometrical interpretation of its canonical momenta in terms of the
components of the (rotational) angular momentum (Kinoshita 1977). In this way we associate
one Andoyer set, composed of six canonical variables, to each layer of the Earth.

By so doing the equations of the rotational motion are established specifying the analytical
expressions of T', V and Q¢,, which depend on the physical characteristic of the Earth model. So,
T is the sum of the (rotational) kinetic energy of each layer, this one can be computed through
the equation

1
T, = 3 < 'L, L; > . (8)

<, > stands for the scalar product in the real tridimensional space and H;l is the inverse of the
tensor of inertia of the layer. V is the potential energy arising from the gravitational interactions
of internal or external origin. This is derived from a potential function expressed in terms of the
canonical variables by means of the Wigner’s theorem. The generalized forces ()¢, are obtained
from the dissipative torques (Gonzilez and Getino 1997).

To solve the equations of motion the Hamiltonian formalism exploits the powerful canonical
perturbations methods. These ones present a great advantage with respect to the transfer
function method. since the non-linear terms of the differential equations can be also studied
with this formalism. This is not the case for the transfer function method, which is intrinsically
a linear procedure. There are other advantages of the Hamiltonian formalism (Escapa et al.
2002) that we do not analyze in this work.

4. VARIATIONAL DERIVATION OF FLUID INTERACTIONS

In the previous sections we have described the way in which the different mechanics charac-
terizing the Earth models are taken into account in the Vectorial and Hamiltonian approaches.
Anyway, there is one interaction that is explicitly worked out by means of the Hydrodynamics
equations in the Vectorial treatment and that, apparently, does not appear in the Hamiltonian
formalism. We are referring to the fluid interaction (pressure torque). Where are this effect
taken into account in the Hamiltonian formalism?

This effect is included in the Hamiltonian of the system through the kinetic energy of the fluid
layer (Moritz 1982, Getino 1995a). In this way to derive the equations of motion of the system
we do not need to employ the fluid motion equations to obtain its interactions; we have only to
construct the kinetic energy of the system, which is a simple task. This is a great advantage of
the Hamiltonian formalism, shared with other variational approaches, with respect to the Vec-
torial Mechanics method. Anyway, using the Hamiltonian formalism we can obtain the explicit
expressions of these interactions. By so doing, we can compare these ones with the expressions
employed in the Vectorial approach. With this aim we are going to compute the interaction fluid
torques for a two and three layer Earth models. Besides, due to the fact that these interactions
are included through the kinetic energy we can consider simple Earth models where the solid
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layers are rigid and there is no gravitational interactions nor dissipative processes. This fact will
simplify the exposition and the computations without changing the basic features of the method.

Two-layer Earth model

We will consider the free rotation of an Earth model composed of two layers: a rigid axial
symmetrical mantle that encloses a fluid core. The Hamiltonian of the system is

1 1
H:Tm+Tf:§<H;}Lm,Lm>+§<H;1Lf,Lf>. (9)

To derive the form of the fluid interactions we write eq. (4) as

dL
Nmint:d—gn+wmALm- (10)

In this situation IN,, ;¢ is the torque due to the interaction of the fluid with the mantle
(N int = —Nyint). To obtain the expression of the left hand side of eq. (10) we have to
write the right hand side in terms of the elements of the Hamiltonian formalism, which are
the known data. Besides, it is expedient to recall that the time derivative of a function of the
canonical variables can be computed through the Poisson bracket

af Of ~~(0HOf OHOIf\  Of
a_{f,H}JrE—;( >+ (11)

dq; dp;  Op;idg; ) Ot

being H the Hamiltonian of the system and p;, ¢; the canonical variables.

To compute the former formulae we have to specify a canonical set. As usual, we employ the
Andoyer variables (Getino 1995a, b), in addition to take advantage of the geometrical meaning
of this set we will express w,, and L,, in terms of the the angular momentum of the system L
and of the fluid L,

L,=L-Lg w,=T1."(L—Ly). (12)

So, the components of IN,, ;,+ in the Tisserand frame will be given by

3
(Nowint); = { (L)~ (L) H Y+ 3 e (1), [(D), — (Lp), | (L)~ (L)) 5 5= 1,23
l,k,p=1

(13)
gk is the alternating symbol; j, k, [ denotes the components in the Tisserand frame. Taking into
account the relationships between the Andoyer variables with the components of the angular
momentum and the form of the tensors of inertia of the mantle and the fluid (Getino 1995b),
we obtain that the expression for the fluid interaction that turns out to be

Nopwint = Ny =Ly A (H;lLf> — Ly A (W + wy). (14)

This expression is the same as that obtained by Sasao et al. (1980) by using the fluid motion
equation. The same expression is also derived by Moritz (1982) using a variational approach
based on Poincaré equations.

Three layer Earth model

Next, let us consider a model composed of three layers: a rigid axial symmetrical mantle, a
fluid outer core and a rigid axial-symmetrical inner core. The Hamiltonian of the system that
is equal to the kinetic energy of the layers is

1 1 1
H=Ty,+T;+Ts= 3 < 'L, L, > +5 < H;lLf,Lf > 45 < 'L, L, >, (15)
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where the subscript s refers to the rigid inner core. For this model the fluid interacts both with
the mantle and with the inner core, so we have to compute two torques. To do this we follow a
similar procedure to the previous one considering the equations

dL dL
Nmint:d—tm"_wm/\Lm; Nsint:d—ts"i_wm/\[fs- (16)

Therefore, the total torque acting on the fluid is N f,t = =Ny int — Ngint. To write easily the
former expressions in terms of the Andoyer set for a three-layer Earth model we will put

L,=L L; Lgw,=1,"(L-L;L). (17)

In this way the components of the interaction torques in the Tisserand frame are

(Nmint); = {(L); = (Lp); = (L), H |+
3
£Y e, (0= )y = ] (D= = s (o
3
Nowe); = {@o HE+ 0 e (00, [(0), = (Lg), = (L), ] (L)
l,k,p=1

The right hand side of these equations are computed by expressing L, Ly, L, I1,,, Il and II,
in terms of the Andoyer canonical set (Escapa et al. 2001). After doing some algebra we obtain
the torque acting on the fluid

N int + Ngint = _Nf nt — Lf A (H;1Lf> = Lf A (wm + wf) . (19)

The expression related with the inner core is complicated. Anyway, if we only retain first order
terms we get the simplified equations

(Nsint); = QA [(Wm)g + (wp)y — (QkS)Q] )
(Nsint)g = QA0 [(wm)l + (wf)l - (ka)l] ) (20)
(Nsint)3 = 0.

(ks); and (ks), are the x and y components of the symmetry axis of the inner core on the
Tisserand frame, € is the mean angular velocity of the Earth, Ag is the equatorial inertia
moment of the inner core and ¢ is an adimensional parameter proportional to the dynamical
ellipticity of the inner core (Escapa et al. 2001).

If we had employed the method used by Mathews et al. 1991 we would have obtained the
same expressions as in (19) and (20). However, here the procedure has been much more simple,
since we have only used the kinetic energy of the system. Finally, let us underline the fact that
with the Hamiltonian formalism, or other variational method, it is not necessary to compute
the expressions of the pressure torques to construct the equations of motion of the system,
since these equations are directly derived from the Hamiltonian of the system. This is a great
advantage with respect to the Vectorial Mechanics approaches.
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