THE LUNAR THEORY ELP2000 REVISITED

J. CHAPRONT and G. FRANCOU

SYRTE - Observatoire de Paris - UMR 8630/CNRS
61, avenue de I’Observatoire, 75014 Paris, France
e-mail: jean.chapront@obspm.fr

ABSTRACT. The construction of the complete lunar theory ELP goes back to the 1980s.
Among all the components which form the solution, planetary perturbations contribute mainly
to its deficiency. A new solution has been build that makes use of the planetary perturbations
(MPPO1) constructed recently by (Bidart 2000). After several transformations and tests, this
new solution is called ELP/MPP02.

Fitting the constants and the reference frame, ELP/MPP02 has been extensively compared
to various JPL ephemerides and mainly DE405/DE406 (Standish 1998) to test its accuracy
on a short time interval of one century and on a long time interval covering several millennia.
Compared to ELP, over a few centuries, a significant improvement of the precision - in particular
on the radius vector - is put in evidence. On the long range, the planetary contributions with
long periods are noticeably improved.

Taking advantage of the partials included in ELP, this new solution is fit directly to LLR
observations. Our future ephemerides shall be based on this contribution using our LLR fits.

1. THE SOLUTION ELP

ELP is a semi-analytical solution for the orbital motion of the Moon. Its construction, under
a complete form, containing all sensible perturbations, goes back to the 1980s. It is named
ELP2000-82 (Chapront-Touzé, Chapront 1983). The main components of the solution includes:
e The Main Problem. It represents the motion of Earth, Moon and Sun where the Earth-Moon
barycenter EMB is moving along a keplerian orbit; it includes partials with respect to various
lunar and planetary parameters which are used when fitting to observations.
e The Earth’s figure perturbations including the nutational motion of the Earth.
e The direct and indirect planetary perturbations. The direct perturbations are due to the action
of the planets on the Earth; indirect perturbations are induced by the deviation of EMB from
a keplerian orbit. Planetary perturbations contain in particular the secular motions of EMB
(eccentricity and perihelion) and of the ecliptic. The motions of the planets come from VSOP82
(Bretagnon 1982).
e The relativistic effects.
e The tidal perturbations.
e The Moon’s figure perturbations and coupling with libration.
The first version of ELP has not been fit directly to observations but via the JPL lunar ephemeris
DE200-LE200. VSOP82 used the same source of comparisons and fits. A brief description of
the various versions of ELP and derived ephemerides is given in Table 1.



Table 1. The different versions of ELP

Version Date Fit  Characteristics

ELP2000-82 1983 DE200 Planetary motions: VSOP82 (Bretagnon 1982)
ELP2000-85 1988 DE200 Secular motions of high degree n in time: t"
ELP2000-82B 1996 DE245 Improved masses, gravitational parameters, tides etc...
ELP2000-96 1997 LLR Numerical complements pags

Lunar librations Moon’s lunar libration theory completed

ELP/MPP02 2002 LLR Planetary motions VSOP2000 (Moisson 2000)

Before the present solution, our last version was ELP2000-96 obtained by adding numerical
complements to ELP on the basis of the JPL ephemeris DE245; a complete analysis of Lunar
Laser Ranging observations from 1972 till 1998 has been performed using this solution and the
analytically completed Moon’s theory of the lunar libration (Chapront et al. 1999).

ELP provides the polar coordinates o (longitude V', latitude U and distance r) under the general
formulation:

o=t N AW, xsin(inh +i2da o Hiphy + O,

n>0  i1,i2,...,0p

) (1)

P
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and \; are literal arguments standing for polynomial functions of the time: A\; = ;- /\g-k)tk.

In the case of the Main Problem, we have also at our disposal the derivatives of the coefficients
A (1

i1ai21"'aip j
of Moon and Sun, lunar and solar eccentricities, inclination, ratios of masses,...). The Main

Problem depends on 4 arguments, D, F, [ and I’ (Delaunay’s arguments). For Earth’s figure
perturbations, we add the argument { = wy + pt, where p is the precession constant for J2000.
For planetary perturbations the components A; are Delaunay’s arguments, and planetary secular
mean longitudes known from a planetary theory. The reference plane of the theory is the mean
dynamical ecliptic at J2000.

are numerical coefficients, ¢

and the mean motions A}’ with respect to several constants (sidereal mean motions

2. A NEW SOLUTION ELP/MPP02

We knew that in ELP the main limitation in precision resulted from the computation of
the series for direct and indirect planetary perturbations. A new solution for planetary per-
turbations in the orbital motion of the Moon has been elaborated by P. Bidart. It is named
MPPO1 and described in (Bidart 2000, 2001). It has been constructed within the framework
of ELP solution and the perturbation method is inspired by Brown’s lunar theory whose basic
concepts are discussed in (Chapront-Touzé and Chapront 1980). The aim of MPP0O1 was to
improve the accuracy taking advantage of two recent progresses: the availability of numerical
tools able to handle very large Poisson series (Software GREGOIRE) and the appearance of a
new semi-analytical planetary theory, VSOP2000 (Moisson 2000).

VSOP2000 is more precise than VSOP82 which has been used in ELP and introduces a
recent set of planetary masses (IERS92). It contains formal developments similar to ELP: the
planetary coordinates (osculating elements) are developed under the form of Poisson series as in
(1). The numerical values of the coefficients depend on the masses but also on the values of the



osculating elements for a given epoch (J2000). These elements have not been obtained directly
from a fit to observations but via a comparison of the analytical solution to the JPL ephemeris
DE403. The angles are linear combinations of the planetary mean longitudes which have been
derived with a better accuracy than in VSOP82. MPPO01 takes advantage of this improvement,
in particular in the integration process of arguments with long periods.

Fig 1. Longitude.
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On the basis of MPP01 we have derived a new solution ELP/MPP02. Its planetary compo-
nent MPP02 has the following characteristics:
e Number of terms: after various numerical tests, compared to MPPO1, the number of terms
has been diminished to reduce the round-off errors of large sums (for example, in longitude we
kept 16000 arguments instead of 128000)
e Mowving perigee and plane of orbit: we have used the original series used in ELP2000-82B,
more precise than in MPPO1.
e Secular motions in lunar perigee, node and mean longitude: we have used the original poly-
nomials of ELP2000-82B in ¢, 2,3, t* since Bidart’s solution has been achieved only in #2.
After fitting the constant to DE405 over one century [+1950;+42060], we have made a com-
parison of the differences between ELP/MPP02 and DE406 on this time interval. Figs 1 to 3
illustrate this comparison. We observe in particular the sensible improvement of ELP/MPP02
(in dark) compared to the original solution ELP (in light).

3. A FIT TO LLR OBSERVATIONS

Fig 4. Longitude.
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Fig 6. Distance.
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Following the same method as we have applied earlier with DE245 (Chapront et al. 1999)

we build numerical complements with DE405 that we call pg05 in such a manner that: DE405 =
ELP/MPP02(405) 4 p4ps5, over the time span [+1950; +-2060]. The notation ELP/MPP02(405)
means than the constants are derived from the fit to DE405. This solution which is nothing
else than DE405 is now compared to LLR observations. A new set of constants is provided with
this comparison. We finally substitute in our analytical solution this new set, and we obtain
the solution ELP/MPP02(LLLR) which results from our fit to LLR observations. Adding the
numerical complements pso5 which are insensible to the change of constants at the millimeter
level, the so-completed solution ELP/MPPO2(LLR) + paos keeps the precision of a numerical
integration. Figs. 4, 5 and 6 show the comparison of these 2 solutions to DE405.
We see on Fig.4 an offset in the longitudes of about 0.”036 which is due to a difference between
the two reference frames (ELP/MPP02 and DE405). The slope which amounts to 0.025” /century
is within the estimated error on the mean motion in longitude. (Shelus et al. 2001) give an
estimate of 0.015” /century for this error. The discrepancies as large as 30 ¢cm in distance in the
mid period of laser observation show that, in spite of post-fit residuals of about 2 to 3 cm, part
of the difference arises from the models and the determinations of various parameters (lunar and
solar parameters, libration, positions of reflectors and stations, tidal coefficients,...).

4. A COMPARISON WITH DE406 OVER 6 MILLENNIA

In order to estimate the precision of the solution on a very long range we have made a
comparison between ELP/MPP02(405) and DE406 over the long interval [—3000; +2500]. Figs
7 to 9 illustrate the crude differences (in light). If one wants to keep closer to DE406, we can
compute a new solution ELP/MPP02* which is the same as ELP/MPP02 but with secular

variations of the lunar arguments w; (mean longitude, perigee and node) fitted on DE406, i.e.:
(k)

wZ@)t2 —|—w£3)t3 —|—w§4) t —|—w(5)t5. The determination of the polynomial coefficients w,™" is realized

i
by a mean square fit.
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Fig 7. Longitude.
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We obtain a noticeable reduction of the differences with DE406 (in dark). Indeed, these
‘empirical corrections’ are a fit rather than an improvement of the secular variations of the
angles in the theory. Although DE406 and ELP/MPP02 are very close one should be aware
of the uncertainty on secular acceleration in longitude which is very much larger than these
empirical corrections. Besides such a fit absorbs the numerical drift of the numerical integration.
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5. CONCLUSION

ELP/MPPO02(LLR) whose constants are fit to LLR data is our new analytical version of ELP
that replaces ELP2000-82B. Practically ELP/MPPO02 is presented in form of Fourier series for
the Main Problem and its partials plus Poisson series for perturbations to the Main Problem.
Two sets of constants are provided as well as literal expressions for the arguments (Moon, Sun
and Planets):

e Constants fit to LLR data for ELP/MPP02 (LLR);

e Constants fit to DE405 (one century around J2000) for ELP/MPP02(405).

When it is coupled to a solution for the lunar libration and other physical models, the new
ephemeris ELP/MPPO02(LLR) + p405 is used for the comparisons to LLR and the determination
of various parameters: lunar and solar parameters, but also tidal acceleration, position of the
dynamical reference frame, correction to the precession constant, libration parameters, position
of the stations ...

A solution with secular correction to the lunar angles (ELP/MPP02*) 'reproduces’ DE406 on
the long range (6 millenia) within a few arcsecond.
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