

Study of the prograde and retrograde excitation at the Chandler frequency Leonid Zotov¹ Christian Bizouard²

¹Sternberg Astronomical Institute

MSU, Moscow, Russia

Journees 2013 17 Septembre Paris ²Paris Observatory, SYRTE, France

Plan of the talk

- Polar Motion components
- Panteleev filtering method
- Chandler wobble geodetic excitation
- AAM and OAM geophysical excitation
- Results for Generalized Euler-Liouville equation with asymmetric part
- AAM maps filtering example

Motion of the Earth's pole

Singular Spectrum Analysis (SSA) - decomposition of the polar motion

PM spectrum and Panteleev's filtering

Dynamical model in time and frequency domain with resonance at the Chandler frequency

$$\frac{i}{\sigma_c} \frac{dm(t)}{dt} + m(t) = \chi(t)$$

$$\sigma_c = 2\pi f_c (1 + i/2Q)$$

$$f_c = \frac{1}{433} \quad Q = 175$$

$$\hat{m}(\omega) = L(\omega) \cdot \hat{\chi}(\omega)$$

$$L(\omega) = \frac{\sigma_c}{\sigma_c - \omega}$$

 $|L(\omega)|$

Chandler PM and its excitation

Singular Spectrum Analysis of the global temperature data HadCRUT3

Lag=20 years

GMSTA oscillations and Chandler excitation

AAM and OAM data - equatorial components

Atmospheric Angular Momentum data with 6 hours resolution in time since 1948 yr for wind and pressure terms from NCEP/NCAR reanalysis

Pressure term

Motion term

Inverted barometer hypothesis applied

Y. H. Zhou, D. A. Salstein. and J. L. Chen, Revised atmospheric excitation function series related to Earth's variable rotation under consideration of surface topography, JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, D12108, doi:10.1029/2005JD006608, 2006

Oceanic Angular Momentum data with 1-day resolution in time since 1949 yr for currents and ocean bottom pressure terms from ECCO model and observations (since 1993)

AAM spectrum, wind

Hydro-atmospheric excitation

L. Zotov, C. Bizouard, On modulations of the Chandler wobble excitation, Journal of Geodynamics, special issue "Earth Rotation" 2012

Generalized Euler-Liouville equation accounting for both triaxiality and anisotropic ocean pole tide

$$(1 - U) m + \frac{i}{\sigma_e} (1 + eU) \dot{m} - Vm^* + \frac{i}{\sigma_e} eV \dot{m}^* = \Psi^{(pure)}$$

$$\begin{split} \Psi_G^{sym}(t) &= m + \frac{i}{\sigma_e(1-U)} \ (1+eU) \, \dot{m} \approx m + \frac{i}{\tilde{\sigma}_c} \, \dot{m} \; , \\ \Psi_G^{asym}(t) &= \frac{-Vm^* + \frac{i}{\sigma_e} \; eV \dot{m}^*}{1-U} \; \; . \end{split}$$

Transition to the frequency domain

Classical (symmetric) part $\widehat{m^*} = \widehat{m}^*(-\omega)$ Asymmetric part $\left(\frac{i}{\sigma_c}i\omega + 1\right)\widehat{m} = \widehat{\Psi}$ $\widehat{\cdot}$ - Fourier transform
 \cdot^* - conjugation $\frac{1}{\sigma_e}eV\omega - V}{U-1}\widehat{m^*} = \widehat{\Psi}$ $\widehat{m} = \mathsf{L}_{\mathsf{sym}}(\omega)\widehat{\Psi}$ $\widehat{m^*} = \mathsf{L}_{\mathsf{asym}}(\omega)\widehat{\Psi}$

Bizouard C., Zotov L., Asymmetric effects on polar motion, Celestial Mechanics, May 2013

Intrinsic polarisation of the polar motion

Circular excitation $\Psi = \Psi_0 e^{i\sigma t}$ produces $m_\sigma(t) = m_0^+ e^{i\sigma t} + m_0^- e^{-i\sigma t}$ \rightarrow common circular polar motion of same frequency (m^+)

Main asymmetric effect results from the rotationnal ocean response

 \rightarrow circular polar motion of opposite frequency $-\sigma$ (m⁻)

with
$$m_0^+ = -\Psi_0 \frac{\sigma_e}{\sigma - \tilde{\sigma}_c}$$
 $m_0^- = \Psi_0^* \frac{\sigma_e V}{2\sigma_c} \left(-\frac{\sigma_e + e\sigma_c}{\sigma - \tilde{\sigma}_c} + \frac{\sigma_e - e\sigma_c}{\sigma - \tilde{\sigma}_c^-} \right)$

blue : triaxiality alone red : asymmetric pole tide alone : dashed : combined effect

Prograde and retrograde filtering with operator inversion

Classical and asymmetric parts of Chandler excitation m_{chand}, X-coordinate

Classical (symmetric) part

Asymmetric part

AAM

OAM

AAM+OAM

Correlations table

	AAM X	AAM Y	OAM X	OAM Y	AAM+OAM X	ΑΑΜ+ΟΑΜ Υ
Prograde Chandler excitation	0.598	0.596	0.896	0.897	0.92	0.92
Retrograde Chandler excitation	0.428	0.430	0.123	0.126	0.438	0.439

Gridded AAM processing

Where on the map the sources of the Chandler excitation are located ?

Filtering of the time series of every pixel and excitation reconstruction in it

Chandler wind excitation mean

Chandler wind excitation changes

CHANDLER WIND $\Delta |m|$

 $|m| = \langle |m| \rangle + \Delta |m|$

1968-1991

Chandler pressure excitation mean

Chandler pressure excitation changes

CHANDLER PRESSURE $\Delta |m|$

 $|m| = \langle |m| \rangle + \Delta |m|$

1968-1991

Conclusions

- Methods of excitation study around the resonant frequencies through Panteleev corrective filtering are developed
- 18.6-yr modulation, found in the reconstructed Chandler excitation, is synchronous with the Moon orbital nodes precession cycle and temperature variations on Earth
- Oceanic and atmospheric excitation together coincide well with reconstructed excitation on 1970-1990 interval
- New Generalized Euler-Liouville equation with asymmetric effects was used to study prograde and retrograde excitation of the Chandler wobble

Acknowledgements: We kindly thank Dr. Yonghong Zhou for providing AAM and OAM data grids. This work is supported by the RFBI grant N 12-02-31184

Celestial pole offsets are the discrepancies between VLBI observations and IAU 2000 precession-nutation model

FCN signal in celestial pole offsets

Free Core Nutation resonance

Liouville equation" derived by Brzeziński (1994) on the basis of the dynamical theory of Sasao and Wahr (1981):

$$\begin{split} & \left(D - i\sigma_{c}{}'\right)\left(D - i\sigma_{f}{}'\right)m = i\sigma_{c}\left[\left(D - i\sigma_{f}{}'\right)(\chi'^{p} + \chi'^{w}) + \left(D - i\sigma_{c}{}'\right)(a_{p}\chi'^{p} + a_{w}\chi'^{w})\right] \\ & \sigma_{c} = \sigma_{c}{}' - \Omega = \frac{\Omega}{T_{c}}\left(1 + \frac{i}{2Q_{c}}\right) & \sigma_{c}' = \Omega[1.002\ 304 + i \cdot 0.000\ 006], \\ & \sigma_{f}' = \Omega[-0.002\ 318 + i \cdot 0.000\ 025]. \\ & \sigma_{f} = \sigma_{f}{}' - \Omega = -\frac{\Omega}{T_{f}}\left(1 - \frac{i}{2Q_{f}}\right) & T_{f}=1-1/431, Q_{f}=20000 \\ & T_{c}=433, Q_{c}=175 \end{split}$$

at FCN frequency $\left(D - i \sigma_{c} \,'
ight)$ can be replaced by -i Ω

Supposing $\chi'^w = 0$, we obtain in frequency domain

$$\widehat{m} = L_{fcn}(\omega)\widehat{\chi} \qquad \qquad L_{fcn}(\omega) = \sigma_c \left[\frac{1}{\sigma'_c - \omega} + \frac{a_p}{\sigma'_f - \omega}\right]$$
$$a_p = 0.095$$

FCN model and filtered CO4 data

AAM transformation to CRF

Detailed spectra around FCN resonance

AAM and OAM input at FCN frequency

