Analysis of time series of the EOP and the ICRF source coordinates

Vladimir Zharov
Natalia Shmeleva

Lomonosov Moscow State University,
Sternberg Astronomical Institute, Moscow

Journees 2013 "Systemes de reference spatio-temporels",
16-18 September, Paris, France
Goals of our work

- Obtain the EOP and coordinates of the ICRF sources from VLBI observations from 1984 to 2010 by ARIADNA software on base of the IERS Conventions 2010.
- 1) Analysis of motions of the ICRF sources
- 2) Analysis of the EOP
 a) ICRF2
 b) ICRF2 + motions
One of goals is “the development of theories of Earth rotation
that are fully consistent and that agree with observations”

We plan to use new series of corrections dX and dY to the X
and Y coordinates of the CIP to improve the IAU2000 nutation theory
2. IAU Working Group for ICRF3 formed (2012)
Goals are expand number of sources and improve accuracy

We plan to use time series of the sources coordinates and derived motions to
1) improve the ICRF2 catalog and
2) determine systematic parts of motions that connected with secular aberration and the Earth precession motion imperfection
Motion of core or defining „radio source“ 1044+719

$z=1.150$,

$|\mu| \approx (43 \pm 2) \, \mu\text{as} / \text{y}$,

$V_T \approx 1.2c$ (apparent)
Motion of 0202+149 (not defining)
Map of motions

- The apparent motions of 573 extragalactic radio sources were estimated from global solution for 3193 series of the VLBI observations from 1984 to 2010.

The least square method with constraints was applied.

- We see that most radio sources (including defining sources) are characterized by significant apparent motions.
Fig. 1. The distribution of the apparent motions of radio sources depending on right ascension and declination.
1) Great number of the sources (339 sources out of 573) have velocities that exceed 50 μs per year

2) The apparent motion distribution is not normal!
Motion of „radio sources“
The jets physics

$r_s \sim v^{-1} \Rightarrow$

$8\text{GHz} \rightarrow 40\text{GHz} \Delta \tau_g \approx 10\div20 \text{ ns}$
\[\tau_1 - \tau_2 = \frac{1}{c} (\vec{B} \cdot \vec{s}_1 - \vec{B} \cdot \vec{s}_2) = \frac{B \sin \theta}{c} (\Delta \theta_2 - \Delta \theta_1) \]

\[\Delta \theta_1 = \frac{r_1}{D} = \frac{k f_1^{-1}}{D}; \quad \Delta \theta_2 = \frac{r_2}{D} = \frac{k f_2^{-1}}{D} \]

\[\tau_1 - \tau_2 = \frac{B \sin \theta}{c} \frac{k}{D} \left(\frac{1}{f_2} - \frac{1}{f_1} \right) \]
Variations of the EOP due to rotation of the ICRF

Trend is $-2.77 \pm 0.22 \, \mu\text{as/year}$
Trend is $+0.144 \pm 0.007 \, \mu$s/year
Improvement of delay model

- 3-D troposphere modeling
- Tropospheric delay from GPS
3-D troposphere modeling

from D.Duev thesis (2012)
Tropospheric correction from GPS measurements ($\sigma \approx 2$ mm)
Conclusion

- New time series of the EOP were obtained; they can be used for improvement of the Earth nutation theory.
- New time series of the ICRF2 sources were obtained and their motions were calculated; they can be used for improvement of the ICRF2 catalog and precession constants.
Thank you for attention!