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ABSTRACT
In this poster, we will show how the Time Transfer Function (TTF) can be used in the relativistic modeling of range, Doppler and astrometric observables. We will present a method to compute these

observables up to second Post-Minkowskian order directly from the space-time metric gµν without explicitly solving the null geodesic. The resulting expressions involve integrals of some functions

defined by the metric over a straight line between the emitter and the receiver of the electromagnetic signal. Some examples will be given within the context of future space missions.

I. Model
Let us consider two observers OA/B moving along their respec-

tive worldlines. The first observer sends an electromagnetic

signal to the second one. The signal is emitted at the coor-

dinates (tA, xA) and has a frequency νA. It is received by OB
at the coordinates (tB, xB), with a frequency νB. The incident

direction of the received signal with respect to a comoving

tetrad λ
µ

(α)
is denoted by n(i).

II. Relation between observables and the Time Transfer Function
A. Time Transfer

The coordinate travel time of a light ray connecting the emis-

sion and the reception points is given by the Time Transfer

Function Tr [1, 2]:

tB − tA = Tr(xA(tA), tB, xB). (1)

This implicit equation can be solved iteratively in the case

of a moving emitter.

B. Frequency shift
It can be shown that the expression for the frequency shift

can be written as [3, 4]
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where βi
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=

1

c

dxi
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dt
is the coordinate velocity of OA/B.

C. Astrometric observables

The direction of the incident light ray observed by OB is

given by the components of the spatial part of the wave vec-

tors in the tetrad basis [5, 6]
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where k̂ j ≡ k j/k0 with kµ being the coordinates of the wave

vector at reception (expressed in the global coordinate sys-

tem). The last relation can be expressed in term of the

TTF [4, 7]
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where the components of the tetrad λ
µ

(α)
are evaluated at

(tB, xB).

III. Post-Minkowskian expansion of the TTF
The expression of the TTF as a Post-Minkoskian series is given in [2]

Tr(xA, tB, xB) =
RAB

c
+

1

c

∑

n

∆
(n)
r (xA, tB, xB)

where the superscripts (n) stand for the nth PM order (quantity of order O(Gn)

with G the Newton gravitational constant) and RAB = |xB − xA|.

In [4], we have shown how to compute the TTF and its derivatives up to the

second PM approximation as integrals of functions depending on the metric over

the Minkowskian path zα(µ) (a straight line joining the emitter and the receiver -

see figure). The TTF is computed by

∆
(1)
r =

∫ 1

0

m
[

zα(µ); g
(1)

αβ
, xA, tB, xB

]

dµ (4a)

∆
(2)
r =

∫ 1

0

∫ 1

0

n
[

zα(µλ); g
(2)

αβ
, g

(1)

αβ
, g

(1)

αβ,γ
, xA, tB, xB

]

dλdµ. (4b)

Similarly, the derivatives of the TTF can be computed by
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The function m, n, mA/B and nA/B are developed in details in [4]. The previous

relations can be used in (1), (2) and (3).

• very general formulation: no symmetry is required nor hypothesis is done.

• it can be applied to any space-time metric (in GR but also in alternative the-

ories of gravity as long as light propagation is governed by the null geodesic

equation).

• analytical validation: computation in the case of the Schwarzschild geometry

performed in [4] and compared with [8].

• quite cumbersome for analytical computations but very efficient for numerical

evaluations: requires only the evaluation of integrals over a straight line - easier

than the determination of the full trajectory of the photon in curved space-time

(a Boundary Value Problem [9]).

IV. Applications
A. Doppler link between BepiColombo and Earth

Simulation of 1 year Doppler data between an orbiter around Mercury and Earth. The three peaks

correspond to solar conjunctions. The expected Doppler accuracy of BepiColombo is 2 µm/s [10].
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with rA/B = |xA/B|.
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B. Astrometric observables in a GAME-like scenario
Simulation of the angular deflection of a light ray coming from a static light source and observed by a

satellite in a 1 AU orbit around the Sun (a GAME-like observation [11]) during a Solar conjunction. The

expected accuracy of the GAME measurement is the µas level [11]. The 3PM term has been computed

analytically by extending the results in [12].
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V. Conclusion
• range, Doppler and astrometric observables can be com-

puted as functions of the TTF and its derivatives.

• the TTF and its derivatives can be computed (up to 2PM

order) by performing integrals over a straight line joining the

emitter and the receiver. The integrals involve functions of

the space-time metric and its derivatives only.

• powerful method in the case of numerical evaluation of the

relativistic observables that can be applied to any metric

(GR and alternative theories of gravity).

•method checked by considering the Schwarzschild geome-

try.

• applications to several future space-mission are presented.
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