

Tests of gravitation at Solar System scale beyond PPN formalism

A. Hees - Jet Propulsion Laboratory - California Institute of Technology in collaboration with:

W. Folkner, R. Park, R. Jacosbson (JPL-CalTech)

P. Wolf, C. Le Poncin-Lafitte (LNE-SYRTE, Paris)

B. Lamine (IRAP, Toulouse)

JSR 13, Paris September 18 2013

Motivations to test GR

- Search for a quantum theory of gravity: loop quantum gravity, supergravity, ...
- Unification of all fundamental interactions: string theories, branes, ...
- Cosmological and galactic observations not explained by GR and standard model of particles
 - introduction of Dark Matter and Dark Energy
 - no direct detection so far ⇒ hints of a deviation from GR?

© ESA and the Planck Collaboration

GR in the Solar System

1) Einstein Equivalence Principle:

- very well tested (up to 10⁻¹³)¹ and improvements planned
 MICROSCOPE, Galileo Galilei, STE-QUEST, ACES, ...
- Gravitation \Leftrightarrow space-time curvature (described by a metric $g_{\mu\nu}$)

II) Einstein Field Equations:

- determination of the metric:
 space-time curvature (metric) ⇔ matter-energy content
- up to now, 2 formalisms mainly used to test the form of the metric:
 - a) PPN formalism¹: metric parametrized by 10 coefficients: very good constraints (γ and β constrained at 10^{-5} see A. Fienga's talk)
 - b) <u>fifth force formalism</u>²: Search for a deviation of the Newton potential of the form of a Yukawa potential: very good constraints except at very small and large distances³

Is it necessary to go beyond?

Post Einsteinian Grav.

- phenomenology
- non local field equation:quantization ?

$$G_{\mu\nu}[k] = \chi_{\mu\nu}^{\ \alpha\beta}[k] T_{\alpha\beta}[k]$$

metric: parametrized byarbitrary functions

M.T. Jaekel, S. Reynaud, CQG, 2005

SME

- phenomenology
- violation of Lorentz symmetry coming from a fundamental level
- action parametrized by a tensor $\bar{s}^{\mu\nu}$

Q. Bailey, A. Kostelecky, PRD, 2006

Fab Four

- General 2nd order tensorscalar theory
- developed in cosmology:Dark Energy
- weak-field metric:parametrized by 4parameters

J.P. Bruneton et al, Adv. in Astr., 2012

MOND

- phenomenology
- developed for galactic observations: Dark Matter (galactic rotation curves)
- main effect in the Solar System: External

Field Effect
$$U = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$$

L. Blanchet, J. Novak, MNRAS, 2011

Is it necessary to go beyond?

Post Einsteinian Grav.

- phenomenology
- non local field equation: quantization ?

$$G_{\mu\nu}[k] = \chi_{\mu\nu}^{\ \alpha\beta}[k] T_{\alpha\beta}[k]$$

metric: parametrized by2 arbitrary functions

M.T. Jaekel, S. Reynaud, CQG, 2005

SME

- phenomenology
- violation of Lorentz symmetry coming from a fundamental level
- action parametrized by a tensor $\bar{s}^{\mu\nu}$

Q. Bailey, A. Kostelecky, PRD, 2006

Fab Four

- General 2nd order tensorscalar theory
- developed in cosmology:Dark Energy
- weak-field metric:parametrized by 4parameters

J.P. Bruneton et al, Adv. in Astr., 2012

MOND

- phenomenology
- developed for galactic observations: Dark Matter (galactic rotation curves)
- main effect in the Solar System: External

Field Effect
$$U = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$$

L. Blanchet, J. Novak, MNRAS, 2011

PPN formalism: γ , β , ...

5th force formalism: α , λ

Is it necessary to go beyond?

Post Einsteinian Grav.

SME

Fab Four

Currently: lack of constraints from Solar System for these theories!

Interesting to consider them and to constrain them using Solar System observations

MOND

- phenomenology
- developed for galactic observations: Dark Matter (galactic rotation curves)
- main effect in the Solar System: External

Field Effect
$$U = \frac{GM}{r} + \frac{Q_2}{2} x^i x^j \left(e_i e_j - \frac{1}{3} \delta_{ij} \right)$$

L. Blanchet, J. Novak, MNRAS, 2011

PPN formalism: γ , β , ...

5th force formalism: α , λ

MOND in the Solar System

 main effect: External Field Effect - the gravitational field is dependent of the external galactic gravitational field¹

$$U = \frac{GM}{r} + \frac{Q_2}{2}x^i x^j \left(e_i e_j - \frac{1}{3}\delta_{ij}\right)$$

 Q₂ depends on the MOND interpolating function and can be computed theoretically¹

$$2.1 \times 10^{-27} s^{-2} \le Q_2 \le 4.1 \times 10^{-26} s^{-2}$$

- increase with the distance: Cassini data around Saturn are sensitive to this effect
- effect on light propagation negligible²: less than 10⁻⁸ m

Cassini data

9 years of range and Doppler data

weighting of the data in the fit - Gauss Markov theorem:
 weight = the individual standard deviation of the individual
 measurements if they are independent
 ⇒ consideration of one range observation per pass

Analysis

range residuals (one per pass)

- study of the systematics of the results obtained (considering different subsets of the data) show our uncertainty was too optimistic: measurements in the same orbit segment not independent (same error)
 - ⇒ consideration of one range observation per orbit segment

Results

- analysis of the systematics (considering different subsets of the data):
 coherent!
- Result of the fit¹:

$$Q_2 = (3 \pm 3) \times 10^{-27} s^{-2}$$

- NO deviation from GR observed at the 1σ confidence level
- severe constraint on theoretical models that predict²

$$2.1 \times 10^{-27} s^{-2} \le Q_2 \le 4.1 \times 10^{-26} s^{-2}$$

SME sensitivity analysis

 simulations¹ of radioscience data within SME for: Messenger (2 years around Mercury) and Cassini (9 years around Saturn)

SME signature on Messenger Doppler:

Expected sensitivities²:

Messenger

Par.	Uncertainties
$egin{array}{c} ar{s}_A \ ar{s}_{TX} \ ar{s}_B \ ar{s}_C \end{array}$	1.1×10^{-10} 3.1×10^{-8} 1.4×10^{-8} 3.2×10^{-11}

Cassini (Saturn)

Par.	Uncertainties
$egin{array}{c} ar{s}_F \ ar{s}_{G} \ ar{s}_{H} \end{array}$	8.6×10^{-11} 1.2×10^{-8} 1.5×10^{-8} 2.3×10^{-11}

- very good constraints expected compared to current limit²
- ⇒ results are promising and give motivations to do the analysis on real data...

² A. Hees, B. Lamine et al, proceedings CPT'13, 2013

Conclusion

- Testing GR in the solar system is very challenging but very important:
 - search for small deviations (smaller than present PPN accuracy)
 - search for deviations in extended frameworks
- Test of MOND External Field Effect with Cassini data¹:

$$Q_2 = (3 \pm 3) \times 10^{-27} \ s^{-2}$$

Exclude a large part of relativistic MOND theories

- Simulations of SME for 2 situations^{2,3}: Messenger and Cassini
 - sensitivity analysis performed: gives an idea of order of magnitude of constraints on SME parameters
 - ⇒ results are promising and give motivations to do the analysis on real data...

¹ A. Hees, W. Folkner et al, submitted, 2013

² A. Hees, B. Lamine et al, CQG, 29/235027, 2012

³ A. Hees, B. Lamine et al, proceedings CPT'13, 2013