

Michael SCHINDELEGGER, Johannes BÖHM, David SALSTEIN

Analysis of atmosphere-excited intraseasonal

polar motion via the torque approach

Session 4: Earth rotation - Theory, modelling and observations

Atmospheric and Environmental Research

Schindelegger et al. (2013), *Recent estimates* of Earth-atmosphere interaction torques and their use in studying polar motion variability, J. Geophys. Res., Vol. 118, publ. online. Geophysical excitation: two modeling approaches

Angular momentum conservation in whole Earth system

Solid Earth rotation as a mirrorimage to change in fluid AM External fluid layers exert torques on solid Earth

Exchange of AM at subystems' interfaces

Coupling mechanisms for the case of the atmosphere:

Total interaction torque exerted by solid Earth (s) on atm. (a)

$$\mathbf{L}^{(s)\to(a)} = -\mathbf{L}^{(a)\to(s)} = \mathbf{L}^e + \mathbf{L}^m + \mathbf{L}^f$$

Ellipsoidal torque Mountain torque Friction torque Local Torques Budget equation of atmospheric angular momentum (AAM):

$$\frac{\mathrm{d}(\mathbf{H}^{p} + \mathbf{H}^{w})}{\mathrm{d}t} + \mathrm{i}\Omega\mathbf{H}^{p} + \mathrm{i}\Omega\mathbf{H}^{w} = \mathbf{L}^{e} + \mathbf{L}^{m} + \mathbf{L}^{f}$$

 $\mathbf{L}^{(s) \to (a)}$

riction torque: global integral of surface stresses, ~5% of

llipsoidal torque: combines pressure/gravit. forces due to t \mathbf{H}^{p} flattening of the Earth, proportional to AM pressure term

 (θ, λ)

ountain torque: uses pressure gradients in , since friction torque and AAM tendency $(d/dt term) = m^{e}$ small: $H^{w} \approx L^{m}$ AAM wind term) 4 **ERA-Interim** (ECMWF reanalysis) vs. **MERRA*** from NASA's Global Modeling and Assimilation Office:

- Consistent calculation of interaction torques and AAM terms
- $\Delta t = 1 \text{ day}, 2007-2010$

*Modern Era-Retrospective Analysis for Research and Applications

Pressure term (=ellipsoidal torque): correlation and regression coeff.

Wind term and mountain torque: correlation and regression coeff.

Atmospheric torques and oceanic excitation:

(1) <u>IB-corrected ellipsoidal torque</u>, mountain and friction torques in "torque excitation scheme" (Wahr, 1982):

$$\hat{m} + \frac{\dot{i}}{\sigma_{cw}} \stackrel{\dot{m}}{\leftrightarrow} \stackrel{\dot{m}}{\leftrightarrow} \frac{\dot{i}}{(C-A)\Omega^2} [1.61 \mathbf{L} - 0.49 \mathbf{L}^e]$$

- IB-corrected oceanic angular momentum (OAM) function can be added
- rather approximate scheme
- (2) <u>Atmospheric + oceanic torques</u> in a coupled atmosphere-ocean model

Atmospheric torques and oceanic excitation:

(3) <u>Angular momentum approach</u> formula with torque terms converted to AAM values:

$$\hat{p} + \frac{i}{\sigma_{cw}} \dot{\hat{p}} \leftrightarrow \frac{i}{(C-A)\Omega} [1.100 \text{H}^{p} + 1.608 \text{H}^{w}]$$
OAM function
Illipsoidal torque (IB)

- orque-based wind term: Exact solution: integration of the AAM budget equation, e.g. in frequency domain
- Gives equivalent wind term

Test against geodetic excitation: (OAM function included)

ERA-Interim (intraseasonal)	Correlation		RMS of differences (mas)	
	X	У	Х	У
Standard wind term	0.59	0.50	14.4	20.2
Equivalent wind term	0.63	0.52	13.8	19.9

10-day normal mode: T=(-13,-7.5)^d (Feldstein, 2008)

10-day normal mode: regions of angular momentum exchange with solid Earth detected by virtue of *gridded*...

- Bandpass filter (7.5;13)^d at each grid point
- Mean amplitude extracted
- IB assumption and strong mid-latitude dependency visible

Summary and conclusion:

- For the current atmospheric reanalyses, the margin between torque and angular momentum approaches in the equatorial component has become small
- Agreement of mountain torque estimates from different models superior to that of the wind term
- Torque-based wind term improves the agreement with observed polar motion excitation
- Potential of the torque approach to highlight regions of angular momentum exchange has been demonstrated for the 10-day normal mode

Thank you for your attention!

e-Mail: michael.schindelegger@tuwien.ac.at

GGOS Atmosphere (P20902) is funded by the Austrian Science Fund (FWF)

Mountain torque and friction torque: corr. and regr. coefficients

AAM Budget Equation

Reliability of MERRA wind term?