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Abstract
A reference frame F can be defined as an equivalence class of spacetime charts (coordinate systems) having a common domain
U and exchanging by a spatial coordinate change. The associated physical space is made of the world lines having constant
space coordinates in any chart of the class. The unit tangent vector to these lines defines in U a 4-velocity field vF. These
are local definitions. The data of a global 4-velocity field v defines a global “reference fluid”. The associated global physical
space is made of the maximal integral lines of that vector field. Assume that the restriction of the global 4-velocity field v to
the domain U is vF. In that case, the local space can be identified with a part (a submanifold) of the global space.

Introduction
A reference frame is essentially a three-dimensional network of observers equipped with clocks and meters.
To any reference frame, one should be able to associate some three-dimensional space, in which the observers
of the network are at rest (even though their mutual distances may depend on time). Clearly, both notions
are fundamental ones for physics. In the relativistic theories of gravitation, the spacetime metric tensor gµν
is a field. Rigid reference frames are not relevant. The relevant notion is that of a reference fluid, given by
a 4-velocity field v on spacetime [1]: v is the unit tangent vector field to the world lines of the observers
belonging to the network. In standard practice, one often admits implicitly that a reference frame can be fixed
by the data of one coordinate system (or chart). The link with the definition by the 4-velocity field v tangent to
a network of observers is as follows [1]. Any admissible chart on the spacetime, χ : X 7→ (xµ) (µ = 0, ..., 3),
defines a unique network of observers, whose world lines are

xj = Constant (j = 1, 2, 3), x0 variable. (1)

The corresponding four-velocity field v has the following components in the chart χ:

v0 ≡ 1
√
g00

, vj = 0 (j = 1, 2, 3). [signature (+−−−) ] (2)

This is valid only within the domain of definition U of the chart χ, thus in general not in the whole spacetime.

The notion of the space associated with a network of observers was missing in the general-relativistic liter-
ature. But in practice, one cannot dispense with some notion of a physical space. One needs to define the
spatial positions of physical objects, even though these depend on the reference network considered. One also
needs a physical space to define the quantum space of states, and spatial vectors or tensors such as the usual
3-velocity vector or the rotation rate tensor of a triad. We recall the results obtained previously [2] regarding
the definition of a local reference frame and the associated space. Then we announce results of a current work,
that aims at defining global notions and at relating them to the formerly introduced local notions.

A local definition of a reference frame F and the associated space MF

One may formally define a reference frame as being an equivalence class of charts which are all defined on a
given open subset U of the spacetime V and are related two-by-two by a purely spatial coordinate change:

x′0 = x0, x′k = φk((xj)) (j, k = 1, 2, 3). (3)

This does define an equivalence relation [2]. Thus a reference frame F, i.e. an equivalence class for this
relation, can indeed be given by the data of one chart χ : X 7→ (xµ) with its domain of definition U (an open
subset of the spacetime manifold V). Namely, F is the equivalence class of (χ,U). I.e., F is the set of the
charts χ′ which are defined on U, and which are such that the transition map f ≡ χ′◦χ−1 ≡ (φµ) corresponds
with a purely spatial coordinate change (3).

The associated (local) space MF and its manifold structure. Applications
The former definition has physical meaning, since the world lines (1) and the 4-velocity field (2) are invariant
under the purely spatial coordinate changes (3). The local physical space M = MF is mathematically defined
as the set of the world lines (1). In detail: let PS : R4 → R3, X ≡ (xµ) 7→ x ≡ (xj), be the spatial
projection. A world line l is an element of the set MF iff there is a chart χ ∈ F and a triplet x ≡ (xj) ∈ R3,
such that l is the set, assumed non-empty, of all points X in the domain U, whose spatial coordinates are x:

l = {X ∈ U; PS(χ(X)) = x } and l 6= ∅. (4)

Consider a chart χ ∈ F. With any world line l ∈ MF, let us associate the triplet x ≡ (xj) made with the
constant spatial coordinates of the points X ∈ l. We thus define a mapping

χ̃ : MF→ R3, l 7→ x such that ∀X ∈ l, χj(X) = xj (j = 1, 2, 3). (5)

Through Eq. (4), the world line l ∈ MF is determined uniquely by the data x. I.e., the mapping χ̃ is one-to-one.
Consider the set T of the subsets Ω ⊂ MF such that,

∀χ ∈ F, χ̃(Ω) is an open set in R3. (6)

We showed that T is a topology on MF, and that the set of the mappings χ̃ defines a structure of differentiable
manifold on that topological space (MF, T ): The spatial part of any chart χ ∈ F defines a chart χ̃ on MF [2].

A Hamiltonian operator of relativistic QM depends precisely [3] on the reference frame F as defined above.
The Hilbert spaceH of quantum-mechanical states is the set of the square-integrable functions defined on the
associated space manifold MF [4]. Prior to this definition, H depended on the particular spatial coordinate
system. This does not seem acceptable. Also, the full algebra of spatial tensors can now be defined in a simple
way: a spatial tensor field is simply a tensor field on the space manifold MF associated with a reference frame
F [5]. A simple example is the 3-velocity of a particle (or a volume element) in a reference frame: this is a
spatial vector, i.e., the current 3-velocity at an event X ∈ U is an element of the tangent space at x(X) ∈ MF.

The global space Nv associated with a time-like vector field v
The former definitions of a reference frame and the associated space manifold apply to a domain U of the
spacetime V, such that at least one regular chart can be defined over the whole of U. Thus these are local
definitions. Can the definition of a reference fluid by the data of a global four-velocity field v lead to a global
notion of space? If yes, what is the link with the former local notions?

Given a global vector field v on the spacetime V, and given an event X ∈ V, let CX be the solution of
dC

ds
= v(C(s)), C(0) = X (7)

that is defined on the largest possible open interval IX containing 0 [6]. Call the range lX ≡ CX(IX) ⊂ V
the “maximal integral line at X”. If X ′ ∈ lX , then it is easy to show that lX ′ = lX . The global space Nv
associated with the vector field v is the set of the maximal integral lines of v :

Nv ≡ {lX ; X ∈ V}. (8)

Local existence of adapted charts and manifold structure of the global set Nv

A chart χ with domain U ⊂ V is said “v–adapted” iff the spatial coordinates remain constant on any integral
line l of v — more precisely, remain constant on l ∩U: For any l ∈ Nv, there is some x ≡ (xj) ∈ R3 such that

∀X ∈ l ∩ U, PS(χ(X)) = x. (9)

For any v–adapted chart χ, the mapping

χ̄ : l 7→ x such that (9) is verified (10)

is well defined on
DU ≡ {l ∈ Nv; l ∩ U 6= ∅}. (11)

Call the v–adapted chart χ “nice” if the mapping χ̄ is one-to-one. We are making progress towards proving
the following: Assume the global vector field v on V is non-vanishing. Then (perhaps under some additional
assumption regarding the manifold V and/or the field v ), for any point X ∈ V, there exists a nice v–adapted
chart χ whose domain is an open neighborhood of X .

Consider the set Fv made of all nice v–adapted charts on the spacetime manifold V, and consider the set A
made of the mappings χ̄, where χ ∈ Fv, Eq. (10). A such mapping χ̄ is defined on the set DU — a subset
of the three-dimensional “space” Nv, Eq. (11). (Here U is the domain of the v–adapted chart χ ∈ Fv.) If the
above conjecture is true, then we can define a topology on the global space Nv, similarly with (6). We can
then also prove thatA is an atlas on that topological space, thus defining a structure of differentiable manifold
on the global set Nv. In order to prove the latter result, the main thing we prove is the compatibility of any two
charts χ̄, χ̄′ on Nv, associated with two nice v-adapted charts χ, χ′ ∈ Fv. This is less easy than in the local
case [2], because two v -adapted charts χ and χ′ have in general different domains U and U′, and we may have

U ∩ U′ = ∅, l ∩ U 6= ∅, l ∩ U′ 6= ∅. (12)

I.e., the domains of the maps χ̄ and χ̄′ do overlap, although the domains of the charts χ and χ′ do not.

The local space MF is a submanifold of the global space Nv

Let v be a non-vanishing vector field on V, and let F be a reference frame made of nice v–adapted charts, all
defined on the same open set U ⊂ V.

Let l ∈ MF, thus there is some chart χ ∈ F and some x ∈ R3 such that l = {X ∈ U; PS(χ(X)) = x }. Then,
for any X ∈ l , we have l′ ≡ lX ∈ Nv and l = l′ ∩ U. We have moreover l′ = χ̄−1(x) = χ̄−1(χ̃(l)). Hence,
the mapping I : MF → Nv, l 7→ l′ is just I = χ̄−1 ◦ χ̃. This is a one-to-one mapping of Dom(χ̃) = MF onto
Dom(χ̄) = DU. Thus the local space MF is made of the intersections with the local domain U of the world
lines belonging to the global space Nv, and we may identify MF with the subspace I(MF) = DU of Nv.

Conclusion

We proposed to define a reference frame as being an equivalence class of spacetime charts χ which have a
common domain U and which exchange two-by-two by a purely spatial coordinate change. This definition is
practical, because it gives a methodology to use coordinate systems in a consistent and physically meaningful
way: the data of one spacetime coordinate system (xµ) defines (in its domain of definition U) the 4-velocity
field of a network of observers, Eq. (2). The coordinate systems that exchange with (xµ) by a purely spatial
coordinate change (3) belong to the same reference frame and indeed the associated 4-velocity field (2) is the
same. Using a general coordinate change instead, allows us to go to any other possible reference frame.

A precise notion of a physical space did not exist before in a general spacetime, to our knowledge. We defined
two distinct concepts: a local one and a global one, which however are intimately related together. In either
case, the space is the set of the world lines that belong to the given (local) reference frame, respectively to the
given (global) reference fluid:

i) Consider a (local) reference frame in the specific sense meant here, i.e. a set F of charts, all defined on the
same subdomain U of the spacetime, and exchanging by a change of the form (3). This allows one to define a
“local space” MF: this is the set of the world lines (1) [more precisely the set of the world lines (4)] [2]. Each
of these world lines is included in the common domain U of all charts χ ∈ F.

ii) The data of a (global) reference fluid, i.e. a global non-vanishing 4-vector field v , allows one to define a
“global space” Nv: this is the set of the maximal integral lines of v .

Both of the local space MF and the global space Nv can be endowed with a structure of differentiable manifold
(if some conjecture is true, for the global space), essentially because each one is endowed with a specific set of
charts: the charts χ̃, where χ is any chart in some reference frame (or equivalence class) F, in case (i). And the
charts χ̄, where χ is any chart which is adapted to some global vector field v and such that χ̄ is one-to-one,
in case (ii). The manifold structure has a practical aspect: Locally, the position of a point in the space can be
specified by different sets of spatial coordinates, which exchange smoothly: x′k = φk((xj)) (j, k = 1, 2, 3),
and we may use standard differential calculus for mappings defined on that space, by choosing any such coor-
dinates. This applies to both the local space MF and the global space Nv.

There is a close link between the local space MF and the global space Nv, provided the 3D network of ob-
servers is indeed the same in the two cases. [I.e.: provided the 4-velocity field (2) associated with the reference
frame F is the restriction of v to the common domain U of all charts χ ∈ F.] If that is true, one may associate
with each world line l ∈ MF the world line l′ ∈ Nv, of which l is just the intersection with the domain U. Thus
the local space can be identified with a part (a submanifold) of the global space.
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