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ABSTRACT. We recall a known inertial effect in satellite motion caused by the indirect acceleration
of the center of integration (the central planet) due to the oblateness of the planet and an attracting
third-body. As estimated, the effect leads to perturbations in satellite motion to be well detectable by
the modern tools of measuring the satellite orbital parameters. However, the effect is not described by
the current IERS Conventions (2003); we suggest to include it to the future IERS Conventions (2010).

1. FORMULATION OF THE EFFECT

Let’s consider the motion of an artificial satellite T1 in the gravitational fields of the oblate central
planet T0 and an attracting oblate third-body T2. The gravitational potential between T0 and T2 is

U02 = f

∫∫∫

T0

dm0

∫∫∫

T2

dm2

r′′20
, (1)

where r′′20 is the distance between an elementary mass dm2 of the body T2 and an elementary mass dm0

of the body T0, and f is the gravitational constant.
The Eq. (1) can be expanded as follows
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where hereafter rij , φij , λij are spherical coordinates of the mass center of body Tj in the reference frame

of body Ti; C
(i)
nm and S

(i)
nm are the coefficients of the expansion of gravitational potential of body Ti in

spherical functions; Mi, Ri are the mass and mean equatorial radius of body Ti; Pnm are associated
Legendre polynomials, and i, j = 0, 1, 2.

Then the motion equations of the artificial satellite T1 in an inertial reference frame are as follows.
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where
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and xi is Cartesian x-coordinate of body Ti in the inertial reference frame; xij ≡ xj − xi.
The last two summands in the right-hand side of Eq. (3) describe the inertial terms in satellite motion

caused by the additional accelerations of the central planet due to oblateness of the planet and that of
the third-body, respectively. The corresponding expressions for accelerations ÿ01 and z̈01 of the other two
Cartesian coordinates of the satellite are similar to Eq. (3). Also, from Eq. (6) one can conclude that the
inertial term caused by the Moon attraction on the oblate Earth is some 103 times more than a similar
term caused by the Sun attraction.

2. DISCUSSION OF THE EFFECT

Table 1 presents the effect of the considered inertial terms in Keplerian elements of the LAGEOS and
ETALON geodynamical satellites over one year interval. The effect is periodic; variations of maximum
amplitude has a period close to that of the lunar orbital motion. Here a, e, ω are the semimajor axis,
eccentricity and argument of satellite perigee, respectively; (e cosω, e sinω) is the eccentricity vector.

Satellite Start of time ∆e × a e∆ω × a ∂
∂t

(e cosω) ∂
∂t

(e sin ω)
interval [cm] [cm] [mas/yr] [mas/yr]

LAGEOS-1 1988/01/07 3 6 28 29
LAGEOS-2 1993/01/01 7 5 30 29
ETALON-1 1992/06/01 15 25 32 41
ETALON-2 1992/06/01 27 13 38 44

Table 1: Maximum variations in satellite Keplerian elements due to the inertial effect.

One sees the discussed effect is large enough to be detectable by the current tools of measuring the
satellite orbital parameters, e.g. by laser technique. This ”indirect oblateness effect” is known in the
satellite dynamics in that or another form since the beginning of spaceflights (Sturms 1964, Moyer 1971).
However, the current IERS Conventions (McCarthy and Petit 2004) do not describe the corresponding
inertial terms. The online documentation of the advanced GEODYN II system for satellite orbit deter-
mination (Pavlis et al. 2010) does not mention the discussed terms as well, although the software itself
does take them into account (Rowlands 2010, private communication).

The IERS Conventions are very detailed in describing the satellite force model, and for long time are
deservedly a standard for developers of satellite dynamics software. The absence of the inertial terms
in this standard might mislead its potential users, therefore we suggest to include a description of these
terms to the future IERS Conventions (2010).
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