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ABSTRACT. The three–axial rigid–body Earth’s rotation problem is treated in the form compatible
with the General Planetary Theory GPT. This paper completes the results of (Brumberg and Ivanova,
2007, 2010).

1. THE SYSTEM OF THE EQUATIONS FOR THE PLANETARY AND LUNAR MOTIONS
AND THE EARTH’S ROTATION

The complete system of the equations for the planetary and lunar motions and the Earth’s rotation
was derived in (Brumberg and Ivanova, 2010). It has the form

Ẋ = iN [PX +R(X, t)] (1)

where
X = (a, ā, b, b̄, X37, . . . , X43), R = (R1, . . . , R4, R37, . . . , R43) (2)

are vectors with 43 components (eccentric and oblique Laplace–type variables of the planets and the
Moon a, b and Ri for i = 1, 2, 3, 4 are 9–vectors, X36+κ and R36+κ for κ = 1, 2, . . . , 7 are connected with
the Earth’s rotation and depend on four Euler parameters (replacing three classical Euler angles) and
three components of the Earth’s rotation angular velocity.

N and P are 43 × 43 diagonal matrices of the structure

N = diag(N,N,N,N, n, n, n, n, n, n, n) ,

P = diag(E(9),−E(9), E(9),−E(9), 1, −1, 1, −1,−4
√

k1k2 , 4
√

k1k2 , 0)

where N is 9× 9 diagonal matrix of mean motions ni, E(9) is unitary matrices of dimension 9× 9, k1, k2

and n are determined by

k1 =
I3 − I1

2I2
, k2 =

I3 − I2
2I1

, n = −Ω

2
,

Ω = 7.292115 · 10−5 rad/s being the mean Earth’s rotation velocity and Ii(i = 1, 2, 3) being principal
inertia moments.

2. THE SECULAR SYSTEM

Our aim is to reduce (1) to the secular system. For that, the system (1) is subjected to a number of
the normalizing Birkhoff and the linear transformations. As a result, the secular system describing the
evolution of the Earth’s rotation (depending on the planetary and lunar evolution) is presented by

ṗ1 = in(p1 + F37), (3)

ṗ3 = in(p3 + F39), (4)

ṗ5 = in(−4
√

k1k2 p5 + F41), (5)

ṗ7 = inF43 (6)
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with conjugate equations for p1, p3, p5. Our computations show that the right–hand members F consist
of two parts, i.e.

F36+κ = U∗(1)
κ + U∗(2)

κ , κ = 1, . . . , 7 (7)

with

U∗(1)
κ = pκ(1 − δκ7)

∑∗
U

(κ,s)
iklm (p1p2)

s2 (p3p4)
s4(p5p6)

s6ps7

7 × (wNwN )s4

9
∏

j=1

(zjzj)
kj (wjwj)

mj , (8)

U∗(2)
κ = (1 − δκ7)p

δκ5

5 pδκ6

6

∑∗
U

(κ,s)
iklm

( 4
∏

j=1

p
sj

j

)

(p5p6)
min{s5,s6}ps7

7 ×

×(wN w̄N )max{s3−δκ3, s4−δκ4}
9

∏

j=1

(zjzj)
kj (wjwj)

mj (9)

with numerical coefficients U
(κ,s)
iklm . δij is the Kronecker symbol. p2 = p1, p4 = p3, p6 = p5. It is seen from

(8)–(9) that F43 is equal to 0 and, therefore, the equation (6) can be omitted (p7 = const).
Equations (3)–(6) with the right–hand members (7)–(9) admit three first integrals

p1p2 + (wN w̄N )p3p4 = C1, p5p6 = C2, p7 = C3 (10)

with real constants C1 , C2 , C3.
The secular system describing the evolution of the planetary and lunar orbits (independent of the

Earth’s rotation) may be presented in the form

żσ = i(µσzσ + nσU
∗
1σ), ẇσ = i(νσwσ + nσU

∗
3σ) (11)

with
U∗

κσ = (zσδκ1 + wσδκ3)
∑∗

U
(κ,σ)
iklm (zjzj)

kj (wjwj)
mj , κ = 1, 3 , σ = 1, 2, . . . , 9 ,

µj and νj being the planetary (j = 1, 2, . . . , 8) and lunar (j = 9) motions of pericentres and nodes,
respectively and νN being 0 (in our computations N = 5). This system admits the first integrals

zjzj = const , wjwj = const (12)

leading to straightforward integration.

3. SOLUTION OF THE EARTH’S ROTATION SECULAR SYSTEM

Designating p1 = g, p3 = h, p5 = f one may present the secular system for the Earth’s rotation in
the form

ġ = in
[

gG(gg, hh, zjzj , wjwj) + Φ(g, g, h, h, zjzj , wjwj)
]

,

ḣ = in
[

hH(gg, hh, zjzj , wjwj) + Ψ(g, g, h, h, zjzj , wjwj)
]

, (13)

ḟ = in
[

fF (gg, hh, zjzj , wjwj) + Θ(g, g, h, h, zjzj , wjwj)
]

where
gG = g + U

∗(1)
1 , hH = h+ U

∗(1)
3 , fF = −4

√

k1k2 f + U
∗(1)
5 , (14)

Φ = U
∗(2)
1 , Ψ = U

∗(2)
3 , Θ = U

∗(2)
5 . (15)

The third equation of (13) is separated from the first two. Hence, these equations may be treated
analytically in much the same manner as in (Brumberg and Ivanova, 2007). It is seen from (8)–(9) that
the planetary and lunar coordinates enter in every part as the functions of the first integrals (12), i.d.
they enter as the constants. Therefore, with taking into account the first integrals (10) the first parts

U
∗(1)
κ of the right–hand members are ready to integrate (13), the second parts U

∗(2)
κ are of more general

form but they are less significant than the first parts. Our computations show that within the linear
theory with respect to small parameters depending on the dynamical flattenings and C3

G = 1 + (gg − hhwNwN )hhwNwN Σ1 + C0 , (16)
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H = 1 − (gg − hhwNwN)ggΣ1 + C0 , (17)

F = −4
√

k1k1 − 4
√

k1k2C3 + (C2
1 − 6gghhwNwN )Σ′

1 , (18)

Φ = hwNwN

{[

g3g − 3g2hhwNwN − 3gg h2 wNwN + h3h (wNwN )2
]

Σ2+

+(gh3 wNwN − g3h)wNwNΣ′
2

}

, (19)

Ψ = −g
{[

[g3g − 3g2hhwNwN − 3ggh2 wNwN + h3h (wNwN )2
]

Σ2+

+(gh3 wNwN − g3h)wNwNΣ′
2

}

, (20)

Θ = −f wNwN(gg − hhwNwN )(gh+ gh)Σ′′
2 (21)

where the constants Σ1,Σ
′
1,Σ2,Σ

′
2,Σ

′′
2 are the functions of the first integrals (12), C0 depends on k1, k2

and two first integrals (10).
To solve (13) the method of the variation of the arbitrary constants is used. Neglecting temporarily

the second parts one gets the trigonometrical solution

g = g0 exp i ξ , h = h0 exp i η , f = f0 exp i ζ ,

ξ = n∆t+ ξ0 , η = nσt+ η0 , ζ = nχt+ ζ0 (22)

with real constants g0, h0, f0, ξ0, η0, ζ0 and the frequency factors

∆ = G , σ = H , χ = F . (23)

The amplitudes g0, h0 of the trigonometrical solution (22) are determined from (23)

g4
0 =

(1 + C0 − σ)2

[2(1 + C0) − ∆ − σ]Σ1
, h4

0w
2
Nw

2
N =

(∆ − 1 − C0)
2

[2(1 + C0) − ∆ − σ]Σ1
.

The amplitude f0 =
√
C2 . By combining three frequencies n, n∆, nσ one can restore the fundamental

frequencies of the classical solution.

n(∆ + σ) = ϕ̇ , n(∆ − σ) = ψ̇ . (24)

The frequency χ corresponds to the Euler period of the Earth’s rotation.
To evaluate the influence of Φ,Ψ,Θ one may retain the form (22) with constant ∆, σ, χ and slowly

change g0, h0, f0, ξ0, η0, ζ0. By substituting (22) into (13) one gets the rates of changing these variables

i gξ̇0 + gg−1
0 ġ0 = in[Φ + g(G− ∆)], (25)

ihη̇0 + hh−1
0 ḣ0 = in[Ψ + h(H − σ)], (26)

i f ζ̇0 + ff−1
0 ḟ0 = in[Θ + f(F − χ)], (27)

By combining these equations with their conjugates one obtains at once

2g0ġ0 = in(gΦ − gΦ) ≡ in (gh− gh)wNwN

[

DΣ2 − C1Σ
′
2(gh+ gh)wNwN

]

, (28)

2h0ḣ0 = in(hΨ − hΨ) ≡ − in (gh− gh)
[

DΣ2 − C1Σ
′
2(gh+ gh)wNwN

]

, (29)

2f0ḟ0 = in(fΘ − fΘ) ≡ 0 (30)

with D = g2g2 − h2h
2
(wNwN )2. With the use of

gh− gh = 2 i g0h0 sin(ξ − η), gh+ gh = 2g0h0 cos(ξ − η) (31)

one gets
ġ0 = nh0wNwN {DΣ2 sin(η − ξ) − g0h0wNwNC1Σ

′
2 sin[2(η − ξ)]} , (32)

ḣ0 = −ng0 {DΣ2 sin(η − ξ) − g0h0wNwNC1Σ
′
2 sin[2(η − ξ)]} , (33)

ḟ0 = 0 . (34)
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4. NUMERICAL ESTIMATES

To get the approximate numerical estimates of the constants of our solution by comparing it with
the classical SMART97 solution we use the same techniques as in (Brumberg and Ivanova, 2007). In
accordance with the SMART97 solution the initial (for the epoch J2000) values of the Euler angles and
their derivatives are

ψ(0) = −0.00006 78954 609 , ψ̇(0) = 0.70105 4959 · 10−6/d ,

θ(0) = 0.40906 46190 715 , θ̇(0) = −0.09606 7366 · 10−6/d , (35)

ϕ(0) = 4.89489 89303 002 , ϕ̇(0) = 6.30038 8130/d

(the angles ψ , ω , ϕ of SMART97 correspond to our angles −ψ , −θ , ϕ, respectively). Starting with these
initial values and the value n = −3.1501 9368/d we get the initial values (for the epoch J2000) for

g
(0)
0 = − sin

θ(0)

2
= −0.2031 0924 , h

(0)
0 =

1√
wNwN

cos
θ(0)

2
= 70.7495 9950 , (36)

f
(0)
0 =

1

2Ω

√

ω2
1

k2
+
ω2

2

k1
= .0000 0058 (37)

where ω1 and ω2 are the components of the vector of the Earth rotation angular velocity referred to
rotating Earth–fixed coordinate system. Then we obtain the numerical values for the first integrals of
the secular system of the Earth’s rotation

C1 = 1.0000000000000, C2 = .0000000000003, C3 = .0000000201237 (38)

and the values for

∆ = 1.0000 0022 , σ = 1.0000 0001 , χ = −.0065 6895 , (39)

n(∆ + σ) = −6.3003 8810/d , n(∆ − σ) = −.0000 0067/d , nχ = .0206 9345. (40)

Our results in ϕ̇ and ψ̇ coincide with the SMART97 solution up to 10−7/d. Then

ξ
(0)
0 = −ψ

(0) + ϕ(0)

2
= −2.4474 1552 , η

(0)
0 =

π

2
+ ψ(0) − γ = 2.5467 0110 (41)

where γ = −3.4233 8818 was obtained in (Brumberg and Ivanova, 2007).
ζ̇0 is determined from (27) with taking into account (31) and (34) and admitting for the approximate

estimates F − χ = 0 in (27)

ζ̇0 = n
√
wNwN sin θ

∆ − σ

C1Σ1
Σ′′

2 cos (η − ξ) . (42)

The initial value (for the epoch J2000) for ζ
(0)
0 is determined by

ζ
(0)
0 = −1

2
n
√
wNwN

∆ − σ

C1Σ1
Σ′′

2

[

cos (θ(0) + η
(0)
0 − ξ

(0)
0 )

θ̇(0) − n∆ + nσ
+

cos (θ(0) − η
(0)
0 + ξ

(0)
0 )

θ̇(0) + n∆ − nσ

]

= −.0313 8315 . (43)

Six constants g
(0)
0 , h

(0)
0 , f

(0)
0 , ξ

(0)
0 , η

(0)
0 , ζ

(0)
0 are arbitrary constants of the trigonometrical solution of

the Earth’s rotation secular system.

5. CONCLUSION

The technique of this paper allows to construct a general theory of motion and rotation of the solar
system bodies.
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