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1. INTRODUCTION

The problem of cosmological influences at small (e.g. interplanetary) scales is discussed for many
decades, starting from the early 1930’s, but still remains unsolved definitively by now (Bonnor 2000). It
became especially topical in the context of the “dark-energy”-dominated cosmology, because the usual ar-
guments against the local Hubble expansion, such as Einstein—Straus (1945) theorem, are no longer appli-
cable when the most contribution to the energy density of the Universe comes from the perfectly-uniform
dark energy (A-term). Moreover, there are some empirical evidences in favor of the local cosmological
influences. For example, assumption of the local Hubble expansion in the dynamics of the Earth—Moon
system is a promising way to resolve a long-standing discrepancy in the rates of secular increase of the
lunar semi-major axis measured by the lunar laser ranging, on the one hand, and derived from astrometric
observations of the Earth’s rotation deceleration, on the other hand (Dumin 2003, 2008, 2009). The aim
of the present report is to provide a further support for this idea by a rigorous mathematical treatment
of the two-body problem against the cosmological background formed by the A-term.

2. MATHEMATICAL FORMULATION OF THE PROBLEM

The starting point of our consideration is Kottler metric for a point-like mass embedded in the back-
ground formed by the A-term, which should be transformed to the Robertson-Walker coordinates to
provide the adequate cosmological asymptotics at infinity (Dumin 2007). Keeping only the first-order
terms of the Schwarzschild radius r,= 2GM/c* and the inverse de Sitter radius 1/rg = \/A/3, we get:
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The equations of motion of a test particle of infinitely small mass in this metric are (for conciseness,
we put ¢ = 1, use the quantities r4 and r¢ defined above, and the coordinate system is oriented so that
the particle moves in its equatorial plane § = /2 = const):
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where dot denotes a derivative with respect to the proper time of the moving particle.

3. RESULTS OF NUMERICAL SOLUTION

Since analytical treatment of the above-written equations is very hard, we shall use here only numerical
solutions for the test-particle orbits. Besides, a serious obstacle in the numerical computation is a very
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Figure 1: Orbits of the test particles at the specified Figure 2: Radii of the orbits as functions
Schwarzschild radius 7 = 0.01 and various de Sitter of time at the specified Schwarzschild
radii r§ (i.e., various values of the A-term). radius of the central body r; = 0.01.

much difference in the three characteristic scales of the problem — Schwarzschild radius (e.g., for the
Earth as a central body, ~1072 m), typical radius of the planetary orbit (e.g., for the Moon, ~10° m),
and de Sitter radius (~10%7 m). So, we present here the results of numerical integration only for a toy
model, when difference between the characteristic scales is not so much as in reality. Namely, we take
the dimensionless Schwarzschild radius r; = 0.01 and de Sitter radii rj about a few thousand. (Here, the
quantities with asterisks are normalized to the initial radius of the orbit.)

As is seen in Figure 1, the orbits are almost circular during the first few revolutions if 7§ 2 5000, but
they take a spiral form at 7§ < 2000 (i.e., when A-term is sufficiently large). Figure 2 represents a temporal
dependence of radii for the same orbits. (The curves are wavy because the initial unperturbed orbit was
chosen to be slightly elliptic.) The almost straight lines in this figure represent the pure Hubble flows
(without a massive central body) for the same values of A. Tt is evident that under certain circumstances
(depending on the ratio between the above-mentioned characteristic parameters) the orbital radii tend to
approach the rates of the Hubble flows. In our opinion, this points to the potential importance of the local
Hubble effect for the planetary dynamics, although a more careful analysis (with realistic Earth—-Moon
parameters and the additional factors affecting the planetary dynamics) is still to be done.

An opposite point of view, that cosmological influences are totally negligible in the Solar system, was
put forward by some other authors, e.g., Klioner & Soffel (2005).
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