Concise Algorithms for Precession-Nutation

Patrick Wallace

STFC Rutherford Appleton Laboratory, UK

Nicole Capitaine

Observatoire de Paris, SYRTE/UMR8630-CNRS, France

Journées 2007

Presentation outline

- Motivation
- Methods
- Examples

The full-accuracy models are BIG

		number of terms					
		1	†	†²	† ³	† 4	† 5
	$\overline{\gamma}$	1	1	1	1 1 1	1	
angles	$\overline{\phi}$	1	1	1	1	1	1
method	ψ	1321	38	1	1	1	1
	EA	1038	20	1	1	1	1
х,у ∫	X	1307	254	37	5	2	1
method	Y	963	278	31	6	2	1
both	s + XY/2	34	4	26	5	2	1

Capitaine & Wallace (2006)

Journées 2007

The need for concise formulations

- Use of the full models is justified when the application demands it and/or computing resources are ample.
- But often a lower accuracy will suffice, and then the full models are an unnecessary overhead.
- In some applications, computing resources are so limited that the full models are unaffordable. Either a simplified model must be used, or some interpolation or look-up scheme.
- The IAU has recognized this need, adopting the 2000B nutation series (McCarthy & Luzum 2003) as a limited-accuracy lightweight alternative to 2000A.

Example applications of concise NPB models

- Satellite orbit predictions.
- Pulsar timing (e.g. TEMPO2 uses IAU 2000B).
- Pointing of telescopes and antennas (~1").
- Prediction of occultations.
- Alternative a priori model for IERS?

The transformation from celestial (GCRS) to terrestrial (ITRS) coordinates can be written as:

$$\mathbf{v}_{\text{ITRS}} = \mathbf{R}_{\text{PM}} \times \mathbf{R}_{3}(\mathbf{\Theta}) \times \mathbf{R}_{\text{NPB}} \times \mathbf{v}_{\text{GCRS}}$$

where θ is the Earth rotation angle (i.e. the nutation-precessionbias matrix R_{NPB} is CIO based).

We wish to devise formulations for R_{NPB} that achieve different compromises between accuracy and computing costs.

Journées 2007

A starting point

- There are several ways of forming **R**_{NPB} (see Capitaine & Wallace 2006) and abbreviated forms of any of these could be developed.
- But the method based on direct series for X, Y and s+XY/2 is particularly attractive:
 - Bias, precession and nutation have already been combined.
 - Each of the three series makes the same contribution to final accuracy (e.g. no sin ε factors to consider).
 - Other aspects (such as the matrix formulation) can be optimized individually.
 - Simple truncation of the series is likely to deliver a nearly optimal result, without resorting to least-squares fitting or harmonic analysis.

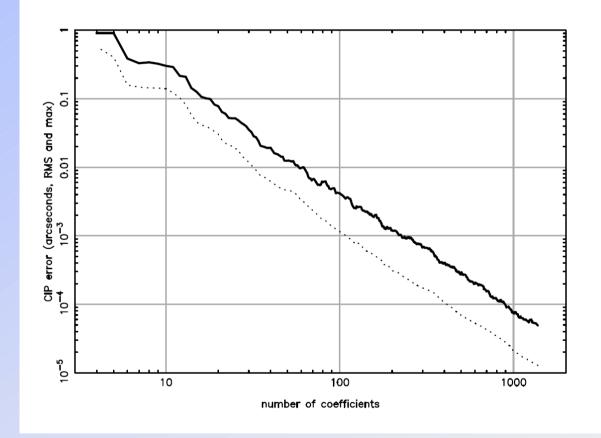
Journées 2007

Relationship to IAU 2000B

IAU 2000B already exists: why go further?

- Our goal is a CIO based R_{NPB}: IAU 2000B is a classical nutation series.
- We want a range of performance options, not just one.
- By regarding a concise model as a low-precision delivery of the IAU standard, we reduce the need to create and maintain separate standards for concise forms.
- But IAU 2000B provides a natural benchmark, and in our examples we shall adopt the same target interval, namely 1995-2050, to aid comparison.

Opportunities for approximation

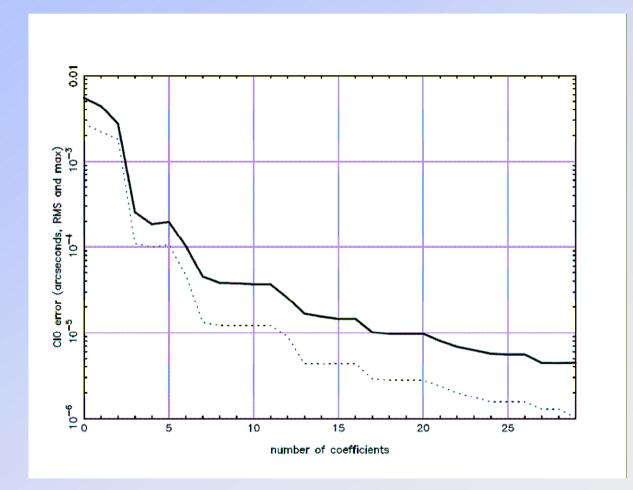

- The X, Y series.
- The s+XY/2 series.
- The matrix formulation (given X, Y and s).
- Fundamental-argument expressions.
- Long-period nutation.

Journées 2007

X, Y series

- Truncating the X,Y series is where the biggest savings lie.
- Each term in X or Y consists of a sine and cosine component at a given frequency.
- The "purist" approach is to regard each term as a vector and to truncate based on modulus - so that each pair of coefficients is either cut or retained.
- But almost all terms have phases such that either the sine or cosine coefficient dominates.
- Truncating by individual coefficient, i.e. usually retaining only one of the pair, avoids ineffectual tiny values in the final series.

X, Y series: cut-off versus accuracy



Journées 2007

S+XY/2 series

- The s+XY/2 series is much shorter than those for X and Y but there are still opportunities for worthwhile savings.
- Only a handful of terms is needed to achieve 1 mas.
- The X,Y values used to remove the XY/2 term do not have to be very accurate.
- For the most concise models, s can be neglected altogether.

S+XY/2 series: cut-off versus accuracy

Journées 2007

R_{NPB} matrix formulation

$(\cos s + X(Y\sin s - X\cos s)/(1+Z)$	$-\sin s + Y(Y\sin s - X\cos s)/(1+Z)$	$-(X\cos s - Y\sin s)$	
$\sin s - X(Y\cos s + X\sin s)/(1+Z)$	$\cos s - Y(Y\cos s + X\sin s)/(1+Z)$	$-(Y\cos s + X\sin s)$	
X	Y	Z)	rigorous

$$\begin{pmatrix} 1 - \frac{X^{2}}{2} & -s - \frac{XY}{2} & -X \\ s - \frac{XY}{2} & 1 - \frac{Y^{2}}{2} & -Y - sX \\ X & Y & 1 - \frac{(X^{2} + Y^{2})}{2} \end{pmatrix}$$
8 µas 2000-2100
165 µas 1800-2200

$$\begin{pmatrix} 1 & 0 & -X \\ 0 & 1 & -Y \\ X & Y & 1 \end{pmatrix} 0.12'' 2000-2100 \\ 0.85'' 1800-2200$$

Journées 2007

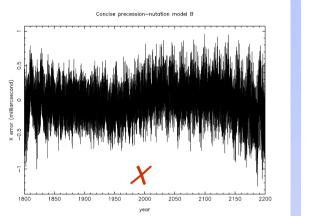
The fundamental-argument expressions

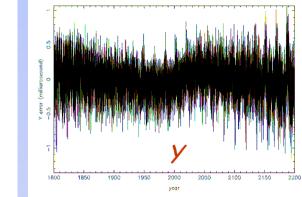
 The X,Y and s+XY/2 series are functions of the *fundamental* arguments, a set of 14 angles.

- They comprise the five Delaunay variables I, I', F, D and Ω , eight planetary longitudes, and the general precession.
- Each is a polynomial in time: the expressions for the Delaunay variables use five coefficients (i.e. up to t⁴), all the others just two.
- Potential savings, from omitting unused arguments and truncating the series for the Delaunay variables, are always modest, but worthwhile for the more approximate R_{NPB} formulations.

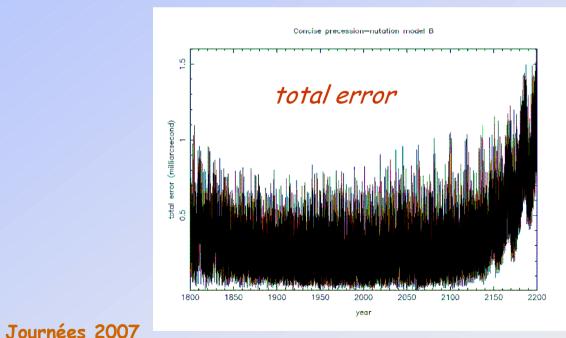
Long-period nutation

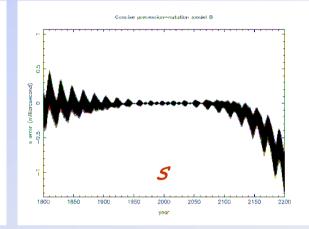
The full X,Y series contain terms with periods from 3.5 days to 93.3 millennia.


- In a restricted time span (e.g. 1995-2050), the terms of longer period produce nearly fixed offsets in X and Y.
- Our examples use 1000 years as the cut-off, eliminating 33 terms and giving offsets of -634.2 µas in X and +1421.45 µas in Y.
- These are combined with the CIP bias and can then be used for all the concise formulations.


Example concise formulations CPN_b, CPN_c & CPN_d

model	coeffs	freqs	RM5	worst	speed
reference	4006	1309	-	-	1
IAU 2000B	354	77	0.28	0.99	7.6
CPNb	229	90	0.28	0.99	15.3
CPN _C	45	18	5.4	16.2	138
CPNd	6	2	160	380	890
			mas	mas	


Journées 2007


CPN_b: 400-year performance

Concise precession-nutation model B

- ~50 µas cut-off in X,Y, ~60 µas cut-off in s+XY/2.
- Better than 1 mas, 1995-2050.
- At the level where free core nutation is starting to matter.

Developments corresponding to CPN_b

$$X = \xi_0 + \psi_A \sin \epsilon_0 - (\psi_A^3/6) \sin \epsilon_0 + \psi_A (\omega_A - \epsilon_0) \cos \epsilon_0 + \Delta \psi \sin \epsilon_0 + \Delta \psi \Delta \epsilon \cos \epsilon_0 (+ \psi_A \cos \epsilon_0 - \chi_A) \Delta \epsilon + (\epsilon_A - \epsilon_0) \Delta \psi \cos \epsilon_0 - (\psi_A^2/2) \Delta \psi \sin \epsilon_0$$

 $Y = \eta_0 + (\omega_A - \epsilon_0) - (\psi_A^2/2) \sin \epsilon_0 \cos \epsilon_0$ $+ (\psi_A^4/24) \sin \epsilon_0 \cos \epsilon_0 + d\alpha_0 \psi_A \sin \epsilon_0$ $+ \Delta \epsilon - (\Delta \psi^2/2) \sin \epsilon_0 \cos \epsilon_0$ $- (\psi_A \cos \epsilon_0 - \chi_A) \Delta \psi \sin \epsilon_0$ $- (\psi_A^2/2) \cos \epsilon_0^2 \Delta \epsilon$

$$s + XY/2 = [X_1Y_0 + (1/2)\Sigma_i(a_ib_i\omega_i)] t + (1/3) X_1Y_2t^3 + (a_ib_i/4) \sin 2(\omega_i t - \phi_i) + (b_i/\omega_i)X_1 \sin(\omega_i t - \phi_i) + Y_2t^2 a_i \sin(\omega_i t - \phi_i)$$

Core terms (in b, c & d) Further terms (in b & c) Further terms (in b only)

Journées 2007

CPN_c: *16 mas performance 1995-2050*

ter	m.		amplitude	1	ľ	F	D	Ω
X			-17251					
X	t f ²		2004191898					
X	f,		-429783					
X	p		-198618					
Y			5530					- 1
Y	t		-25896					1
Y	f		-22407275					
s + XY/2	t P		3809					
s + XY/2	r		-72574		~		~	
X		sin	-6844318	0	0	0	0	1
$\frac{x}{2}$	t	sin	-3310					
X	t	cos	+205833				38	
Y Y		cos	+9205236 +153042			34	**	40
s + XY/2	t	sin sin	+153042 -2641	**	39	**	80	89
S + A1/2 X		sin	+82169	0	0	0	0	1
Ŷ		COS	-89618					2
x		sin	+2521	0	0	0	2	0
Â		sin	+5096	ŏ	ŏ		-2 -2	ĭ
Ŷ		COS	-6918		*	2	**	
x		sin	-523908	0	0	2	-2	2
x	t	cos	+12814	38		2	-2	2
Ϋ́Υ		COS	+573033	49	88	38	**	**
Ŷ	t	sin	+11714	45	99	-	89	**
X		sin	-15407	0	0	2	0	1
Y		cos	+20070	38	89	-		
X		sin	-90552	0	0	2	0	2
Y		cos	+97847	271	95	39	**	
X		sin	-8585	0	1	-2	2	-2
Y		cos	-9593	38	88			
X		sin	+58707	0	1	0	0	0
Y		cos	+7387	38	-		89	1
X		sin	-20558	0	1	2	-2	2
Y		COS	+22438	**	**			
Y		cos	+2555	1	0	-2	-2	-2
X		sin	-4911	1	0	2	0	-2
Y		cos	-5331					
X		sin	-6245	1	0	õ	-2	0
, Y		COS	+3144	1	0	0	0	-1
X X		sin	+28288 +2512	1	0	0	0	0
		sin		1		. V 		1
Y		COS	-3324		0			1
X X		cos sin	+2636 -11992	1 1	0	2	0	1
A Y		sin cos	+12903	1 33		2		2
		COS	+12905 Uas	L				

- Coefficients can be rounded to 100 µas – though as a rule this will not affect compute time.
- 2-coefficient fundamental argument expressions are adequate for this formulation.

CPN_d: an extremely concise formulation

The expression:

$$\mathbf{R}_{NPB} = \begin{pmatrix} 1 & 0 & -X \\ 0 & 1 & -Y \\ X & Y & 1 \end{pmatrix}$$

where:

 $X = 0.00971660 + - 0.00003318 \sin \Omega - 0.00000254 \sin A$

 $Y = -0.00010863 t^{2} + 0.00004463 \cos \Omega + 0.00000278 \cos A$

with t in centuries since J2000.0, and where:

 Ω = 2.182 - 33.757 t radians A = -2.776 + 1256.664 t radians

Delivers 0.38 arcsecond accuracy throughout 1995-2050, comparable with neglecting polar motion and adequate for pointing small telescopes (for example).

Journées 2007

- Capitaine N., Wallace P.T., 2006, High precision methods for locating the celestial intermediate pole and origin, Astronomy & Astrophysics, 450, 855-872
- McCarthy, D.D. & Luzum, B.J., 2003, An abridged model of the precession-nutation of the celestial pole, Celest. Mech. Dyn. Astron. 85, 37-49

Journées 2007