Three-year solution of EOP by combination of results of different space techniques

Štefka V.¹, Pešek I.², Vondrák J.¹ ¹ Astronomical Institute Prague, ² Czech Technical University Prague

Contents:

- > Introduction;
- \succ Basic idea of the method;
- \succ The transfer function T;
- \succ Example of three-year solution;
- > Conclusions.

Introduction:

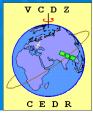
Each technique has analysis centers whose products are published (positions and velocities of stations, Earth orientations parameters etc.);

Products of techniques can only be combined for stations equipped with more than one technique;

There are two approaches to combination:

 rigorous combination – combined are original observation equations or results of individual techniques using covariance matrices;

non-rigorous combination is much simpler because the covariance matrices are not needed;



Original method derived by Kostelecký and Pešek:

➤ The method is based on combining station position vectors in the celestial reference frame that are functions of both EOP and station coordinates:

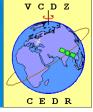
$$X_{C} = PNR_{Z} \left(-GST\right)R_{X}(y_{p})R_{Y}(x_{p})X_{T}. \quad (1)$$

Two types of constraints are necessary:

 constraint of "no net rotation" to conserve station coordinate system;

 constraint to tie EOP at the adjacent epochs with simple formula applied in the form of additional observation equations with a properly chosen weight w:

$$EOP(n+1) - EOP(n) = 0 + v.$$
 (2)



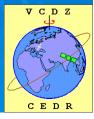
The method is further modified by applying "Vondrak smoothing":

The smoothing method consists in finding a weighted compromise between two different conditions: smoothness (S) of the searched curve and its fidelity (F) to observed function values.

$$S = \frac{1}{b-a} \int_{a}^{b} \varphi^{'''^{2}}(t) dt, \quad F = \frac{1}{n-3} \sum_{1}^{n} pvv$$

The compromise is then done by minimizing a combination of these constraints, i.e. the expression $S + \varepsilon F = \min$, in which ε is the coefficient of smoothing.

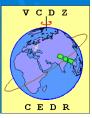
 $\mathcal{E} = 0$ leads to a quadratic parabola, $\mathcal{E} = \infty$ leads to a curve running through all points.



Implementation of the smoothing method:

> We use the definition of the smoothness (S) for condition (2) so that adjacent EOP are more suitably constrained to each other;

> The fidelity (*F*) is implicitly included by using standard leastsquares condition $\sum pvv = \min$ for the whole combination of EOP and station coordinates.



Relation between the coefficient of smoothing and the new weight:

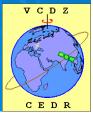
> We suppose that the new weight **w** is reciprocal value of the coefficient of smoothing ε .

The transformation (1) yields observation equation of the form:

$$\sum_{j} \frac{\partial x_{o}}{\partial U_{j}} dU_{j} = x_{obs} - x_{0} + v$$
⁽³⁾

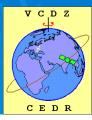
We can study the behavior of each periodic term separately:

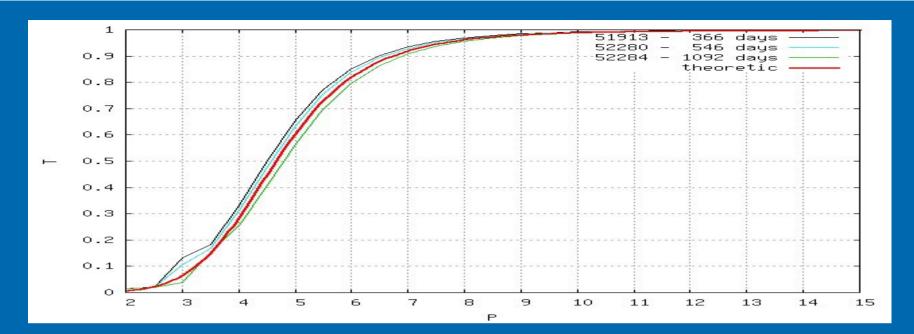
- right hand side of equation (3) is changed in order to simulate signal with known period (P) and amplitude (A);
- transfer function for different values of P and w is derived as a ratio of amplitude of our solution to that of modeled one;



Three independent solutions of transfer function were compared with analytical formula expressed by Huang & Zhou (1981,1982) for situation when we wish to pass 99% of amplitude of a periodic process with period P days:

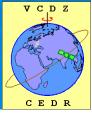
$$\frac{1}{w} = \varepsilon (P_{0.99}) = 99 \left(\frac{2\pi}{P_{0.99}}\right)^{6}.$$
 (4)

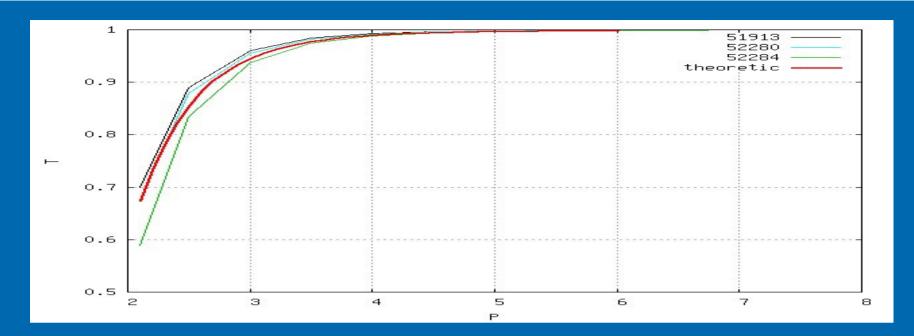




 \succ This graph shows comparison of computed transfer functions with theoretic one.

> The choice of the numerical values of **w** and ε were calculated by formula (4) where P_{0.99} = 10 days.

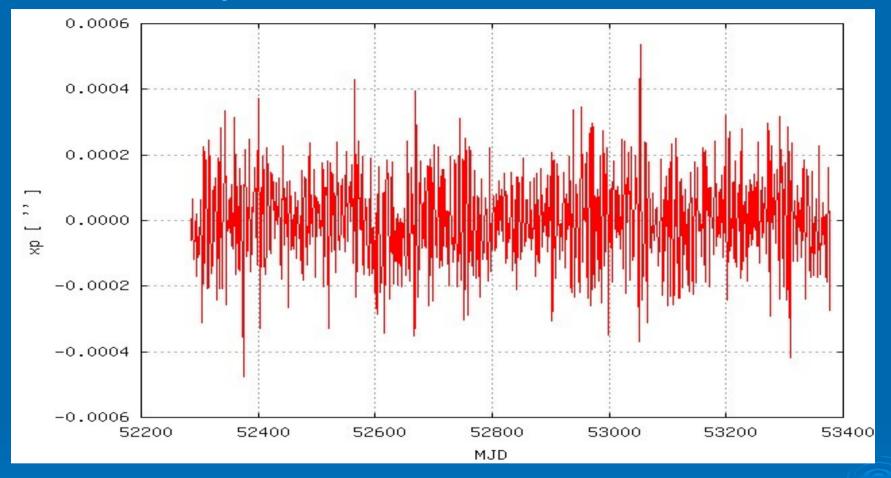


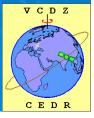


 \succ This graph shows comparison of computed transfer function with theoretic one.

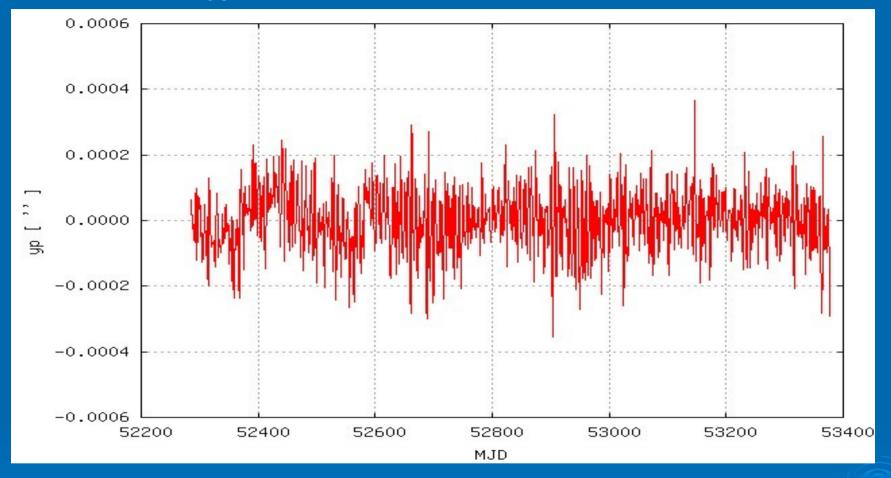
> The choice of the numerical values of **w** and ε were calculated by formula (4) where $P_{0.99} = 4$ days.

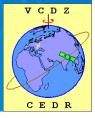
Differences of xp between IERS C04 and our solution :



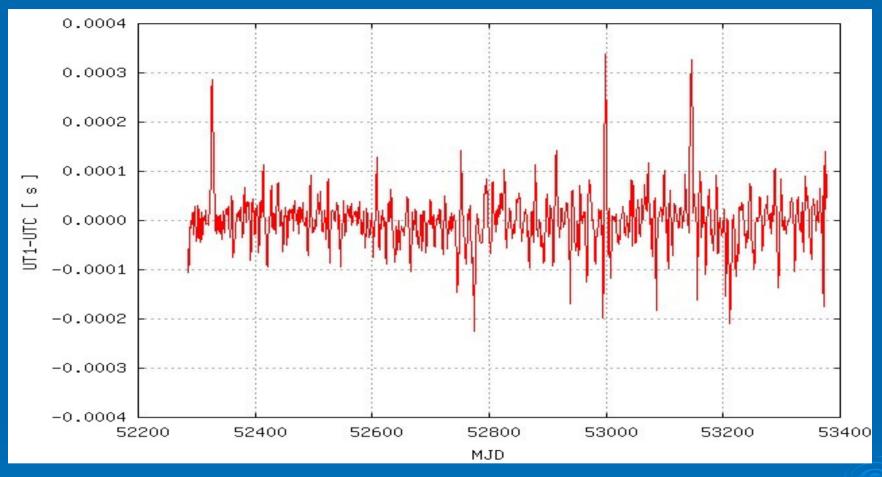


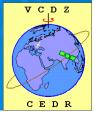
Differences of yp between IERS C04 and our solution :





Differences of UT1-UTC between IERS C04 and our solution :





Conclusions:

> Comparison of transfer function derived by our method and the one expressed analytically shows a good agreement so that we can use a simple formula $w = \frac{1}{c}$.

Three-year solution was computed with weight assuring that all periodic variations with period of 4 days and longer are passed by our system completely.

> The combined EOP are very close to the IERS C04 series. The rms differences are 0.132 mas, 0.101 mas and 0.0545 mas for xp, yp and UT1 – UTC, respectively.

Thank you for your attention !!!

