Earth's interior with VLBI: ... and the celestial frame?

S. B. Lambert⁽¹⁾, V. Dehant⁽²⁾, A.-M. Gontier⁽¹⁾

⁽¹⁾SYRTE, CNRS UMR8630, Paris Observatory ⁽²⁾Royal Observatory of Belgium

Observed sources

 The observational history is not uniform

For global VLBI analysis, attention has to be paid to the underlying celestial reference frame

Several strategies can be adopted: we propose to try some of them

Solution characteristics

¤ Identical...

- - Most station coordinates as global
 - □ Some modeled by splines (e.g., Fairbanks)
 - NNR/T on 26 sites wrt VTRF 2005

¤ EOPs

- IAU 2000 resolutions, including the NRO-based transfo
- - ¤ NMF

Solution characteristics

Celestial frame

- ≍ Elevation cut-off 6°
- Split between global and local?

Subset for the NNR? \leftarrow ICRF defining sources, 247 stable of Feissel-Vernier et al. (2006)... Please make your choice

Name	Fixed	Global	Local	NNR	Postfit rms (ps)	Rms dX/dY (µas)
A: Fixed	816	0	0	2	24.0	165/167
B: Gio 212	0	816	0	ICRF 212	23.6	166/173
C: Gio 247	0	816	0	MFV 247	23.6	161/169
D: Loc 212	0	521	295 poorly observed	ICRF 212	23.6	162/170
E: Loc 247	0	521	295 poorly observed	MFV 247	23.6	161/169
F: Uns 212	0	653	163 unstable	ICRF 212	23.2	167/168
G: Uns 247	0	653	163 unstable	MFV 247	23.2	166/168

Nutation offsets at a glance

¤Fixed - Glo 212

¤Glo 212 - Glo 247

¤Glo 247 - Loc 247

¤Glo 247 - Uns 247

Forced nutations

$$\begin{split} \tilde{\eta}(t) &= \delta X(t) + \mathrm{i}\,\delta Y(t), \\ &= (A^{\mathrm{Re}} + \mathrm{i}\,A^{\mathrm{Im}})\mathrm{e}^{\mathrm{i}\sigma t}, \end{split}$$

Corrections for non linear terms
Erroneous values in MHB
Lambert & Mathews (2006)
Only affect the 18.6-yr at ~30 μas

Pro and retro for 18.6-yr, 9.3-yr, 6.2-yr, annual, semi-, tri-, monthly, semi-, RFCN

Fit of forced nutations

Down to the Earth's interior

Resonances associated w/ layers (mantle, core, inner core)
Nutation frequency band: res. of outer and inner cores
Resonance formula (Mathews et al. 2002)

$$\tilde{\eta}_{NR}(\sigma) = T(\sigma; e | e_R) \ \tilde{\eta}_R(\sigma),$$

$$T(\sigma; e|e_R) = \frac{e_R - \sigma}{e_R + 1} N_0 \left[1 + (1 + \sigma) \left(Q_0 + \sum_{\alpha=1}^4 \frac{Q_\alpha}{\sigma - s_\alpha} \right) \right],$$

≍ Periods and damping of outer and inner cores

Outer and inner cores resonance periods and Q

Conclusion

Positional instability of radio sources + VLBI analysis strategy
can move the nutation amplitudes by ~30 μas for the 18.6-yr,
~20 μas for the annual

⊭ Earth's interior

- \bowtie Outer core $\triangle P \sim 0.05$ day, $\triangle Q \sim 1000$
- Inner core $\Delta P \sim 100$ days, $\Delta Q \sim 300$

Caution in using the different VLBI data sets since done using various analysis strategies

Which strategy for the best internal accuracy of nutations? (MacMillan & Ma 2007)