Estimation of Earth Interior Parameters From a Bayesian Inversion of VLBI Nutation Data

L. Koot⁽¹⁾, A. Rivoldini⁽¹⁾, O. de Viron⁽²⁾, and V. Dehant⁽¹⁾

(1) Royal Observatory of Belgium,

(2) Institut de Physique du Globe de Paris

Journées Systèmes de Référence Spatio-Temporels Observatoire de Paris-Meudon September 2007

Outline

- Nutation and the Earth interior
- Parameters Estimation
- Results
- Conclusions

The Moon, the Sun and the planets exert a gravitational torque on the equatorial bulge Response of the Earth: precession/nutation The torque is known very accurately from celestial mechanics

The rotational response of the Earth depends on its internal structure

Earth interior model:

- 3 ellipsoidal layers: mantle, liquid outer core, and solid inner core
 - spheroidally stratified (e.g. constant density on spheroidal surfaces)
 - characterized by its moments of inertia: A, C, A^f, C^f,... and thus its dynamical ellipticity:
 e ≡ (C − A)/A, e^f,...
- anelastic: the Earth is deformable with a delayed response to the forcing → complex compliances describing the deformability of each layer

- Interactions between the layers:
 - inertial coupling (pressure on the elliptical boundaries)
 - gravitational coupling
 - other couplings (friction, topographic, electromagnetic,...) not modeled and described by general coupling constants
- External geophysical fluids: ocean, atmosphere

Geophysical parameters of this Earth model:

Dynamical ellipticities, compliances, coupling constants between the 3 layers

Nutation measurement:

VLBI technique: very accurate data Data used: GSFC "gsf2007b.eops"

Main interest of nutation to study Earth interior:

- Gravitational torque known very accurately from celestial mechanics
- Nutation measured very precisely with VLBI technique
- Earth response to the torque depends on internal structure

 \longrightarrow VLBI data allow to constrain parameters of the Earth interior model

Parameters Estimation

I. Direct estimation from the VLBI time series

Main advantages:

- All the available data are used, no extraction of amplitudes at given frequencies (as in MHB)
 - → No loss of information
- Takes into account the time variable error on VLBI data

Standard Deviation on $\Delta \epsilon$ from VLBI Data (mas)

Time domain nutation model:

$$\begin{split} \hat{\eta}(t) &= \sum_{\sigma} \tilde{\eta}(\sigma) e^{i \arg(\sigma, t)} & \text{Periodic terms} \\ &+ \left(P \sin(\epsilon_0) + i \frac{d\Delta \epsilon}{dt} \right) (t - t_0) & \text{Linear rates} \\ &+ c_{\psi} \sin(\epsilon_0) + i c_{\epsilon} & \text{Constant offsets} \end{split}$$

Parameters Estimation

II. Inversion method

Setting:

Modeling error takes into account the imperfections in the nutation model: simple Earth interior model, ocean tides, atmosphere, free FCN not modeled,...

We choose to use the **Bayesian inversion method** because:

- No linearization of the model
- Easy to include modeling uncertainties

Parameters Estimation

Bayesian inversion: The parameters are random variables and the result of the method is the estimation of their probability density function (pdf).

- Estimation of the mean and standard deviation of the pdf
- We compare our estimates with those of MHB (3 σ intervals)

Results: Compliance of the whole Earth

- Imaginary component of the compliance: due to the delay of the deformational response
- In MHB this parameter is not estimated but computed theoritically
- Difference from MHB due to the 0.7 scaling factor introduced by MHB in the ocean tides current contribution

Results: Coupling constant at the CMB

- Different from MHB but there is still an overlap between the 3σ domains
- Error 2 times smaller
- Resulting Q of the FCN mode: $\simeq 14000 \pm 600$ MHB obtained: $\simeq 19000 \pm 1400$

Results: Coupling constant at the ICB

- The mean value is more than
 2 times larger than MHB (but still same order of magnitude)
- Similar estimated error as MHB. The real part has even a larger error
 → more realistic ?
- Resulting Q of the FICN mode: $\simeq 270 \pm 30$. MHB's value is: $\simeq 640 \pm 100$

Conclusions

- The Earth interior parameters can be estimated *directly* from the time domain VLBI data. No need of the extraction of amplitudes at some given frequencies (as done in MHB)
- Estimated error on the parameters always smaller than in MHB except for the parameters at the ICB, which seems reasonable
- Differences between this computation and MHB due to:
 - inversion strategy
 - 7 years of additional data
 - empirical parameters not justified (e.g. 0.7 factor)
- *K*^{*ICB*} is the most different parameter between our estimation and MHB. Its interpretation in terms of physical coupling mechanisms must be done with care

Results: Dynamical ellipticities

- Estimations in agreement with MHB In particular, the FCN frequency is in agreement with their one
- Errors 3 times smaller

Results: Compliances

- In this paper: complex anelastic compliances estimated from **VLBI** data
- In MHB: real elastic compliances estimated from VLBI data + anelastic correction computed independently

Compliance for the fluid core

be Can not compared with MHB unknown because anelastic correction

Compliance for the whole Earth

- Real: in agreement with MHB, smaller error
- Imaginary: Difference from MHB due to the 0.7 scaling factor introduced by MHB in the ocean tides current contribution

• Real: in agreement with MHB — FICN frequency in agreement

- Imaginary:
 - More than 2 \times larger than MHB, but still same order of magnitude
 - Q of the FICN mode: $\simeq 270\pm 30,$ while MHB's value is $\simeq 640\pm 100$