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ABSTRACT. Nowadays it is no longer necessary to justify the importance of consistent relativistic
modelling in the field of fundamental astronomy. Although in the last 20 years the theoretical foundations
of relativistic modelling have been elaborated with a lot of care, there are a number of issues, mostly of
practical character, that still require both theoretical discussions and practical implementations. These
’gray’ areas of the modelling include modelling of rotational motion of celestial bodies, correct inclusion
of multipole structure of the bodies in the translational equations of motion, interplay between numer-
ical accuracy and analytical ”order of magnitude” of various relativistic terms, relativistic scaling of
astronomical quantities and units of measurements. An overview of the relativistic issues in the field of
fundamental astronomy is given here from this critical point of view.

1. INTRODUCTION

The field of applied relativity has emerged about 40 years ago, when the growing accuracy of observa-
tions and the new observational techniques (like, radar ranging) have made it necessary to take relativistic
effects into account on a routine basis. Since that time, applied relativity has evolved into one of the basic
ingredients of fundamental astronomy, the discipline that includes celestial mechanics, astrometry, time
scales and time dissemination etc. On the one hand, that development required significant theoretical
efforts. Triggered also by the needs of applications at an engineering level, special theoretical techniques
have been developed to construct the so-called local reference system (like GCRS) and to derived the
equations of translational and rotational motion of a system of N bodies having arbitrary composition
and shape. On the other hand, astronomers and engineers had to re-think and to re-formulate their
problems in a language compatible with general relativity. The need to change the way of thinking from
Newtonian “common sense” to relativistic is probably the source of many of the difficulties that non-
experts have with relativity. In the same time the relativity itself is quite simple and elegant at least in
the post-Newtonian approximation.

It seems to be natural and advantageous to review the status of applied relativity from time to time,
and clearly formulate problems which we can consider as well understood and “solved” and also those
problems which we have to classify open ones. Previous attempts to formulate unsolved problems in the
field of celestial mechanics (including relativistic celestial mechanics) were undertaken by Brumberg &
Kovalevsky (1986) and Seidelmann (1986). This short review is by no means intended to serve as a full
update of those publications, but represents just a step in that direction.

2. THE IAU 2000 FRAMEWORK

The IAU 2000 framework for relativistic modelling (Soffel et al., 2003) represents a self-consistent
theoretical scheme enabling one to model any kind of astronomical observations in the post-Newtonian
approximation of general relativity. The framework has three main theoretical ingredients:

1. The theory of local reference systems (e.g. Geocentric Celestial Reference System, GCRS).

2. The post-Newtonian theory of multipole expansions of gravitational field.

3. Careful investigation of the orders of magnitude of various effects that has allowed to make the
post-Newtonian reduction formulas for time scales as simple as possible.
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The local reference systems have two fundamental properties:

A. The gravitational field of external bodies (e.g. for GCRS all solar system bodies expect the Earth)
is represented only in the form of a relativistic tidal potential which is at least of second order in the
local spatial coordinates and coincides with the usual Newtonian tidal potential in the Newtonian
limit.

B. The internal gravitational field of the subsystem (e.g. the Earth for the GCRS) coincides with
the gravitational field of a corresponding isolated source provided that the tidal influence of the
external matter is neglected.

These two properties guarantee that the coordinate description of the local physical processes in the
vicinity of the considered body (e.g. in the vicinity of the Earth in the case of GCRS) is as close as
possible to the physical character of those processes. This means, for example, that if some relativistic
effect is present in the coordinates (e.g., of a satellite of that body) the effect cannot be eliminated by
selecting some other (“more suitable”) coordinates and therefore has physical character.

It should be noted that although only one local reference system – GCRS – is defined by the IAU 2000
framework explicitly, the framework foresees GCRS-like local reference systems for each solar system body
for which the local physics (e.g. the structure of the gravitational field and the theory of rotational motion)
should be precisely formulated. For example, modelling of LLR data requires a local Celenocentric
Celestial Reference System. Recent projects aimed at precise modelling of the rotational motions of
Mercury and Mars will have to use the corresponding reference system for Mercury and Mars, respectively.
All these local systems are defined by the same formulas as those given in the IAU 2000 framework for
the GCRS, but with index E interpreted as referring to the corresponding body.

Moreover, a local reference system defined by the same IAU 2000 formulas, but constructed for a
massless observer (with index E referring to a fictitious “body” of mass zero), is suitable to describe
physical phenomena in the vicinity of that observer and, in particular, to define measurable quantities
(observables) produced by that observer. The relation between this point of view and several standard
ways to describe observables in general relativity is described by Klioner (2004).

Let us also mention that the IAU 2000 framework by no means restricts the freedom to use any other
reference systems for the analysis and modelling of various phenomena. In some toy models possessing
some special symmetries it may be advantageous to reflect those symmetries directly in the choice of the
coordinates. This could help to formulate the problem and its solution in a simpler way. If those other
reference systems are defined correctly, one can always find a coordinate transformation between the IAU
2000 reference systems and those other reference systems. The IAU 2000 framework suggests a standard
choice of the reference systems. That standard choice can be used by those who do not want to care
about the relativistic formulation by themselves. On the other hand, the IAU 2000 framework is also a
particular set of reference systems in which all results and parameters obtained by different groups can
be compared and combined, even if those groups use different relativistic formulation in their work.

3. THE IAU 2000 FRAMEWORK AND PPN FORMALISM

The IAU 2000 framework has been formulated within Einstein’s general relativity. On the other hand,
it is clear that modern high-accuracy astronomical observations open one of the most important ways to
test the validity of general relativity. Most of the best current estimates of many relativistic effects come
from high-accuracy astrometry (Will, 2006). A popular way to quantitatively test general relativity in
the post-Newtonian approximation is to estimate from observations numerical parameters in the models
formulated in the so-called Parametrized Post-Newtonian (PPN) formalism (e.g., Will, 2003). The PPN
formalism is a phenomenological scheme covering a broad class of possible theories of gravity in the weak-
field slow-motion (post-Newtonian) approximation. Many metric theories of gravity were investigated by
the authors of the PPN formalism and a generic form of the post-Newtonian metric tensor of a system
of N bodies was derived. That PPN metric tensor is a generalization of the BCRS metric tensor given in
the IAU 2000 framework and contains a number of numerical parameters. At least two such numerical
parameters are well known in the astronomical community: β and γ. These parameters have been often
determined from observations.

Two attempts to generalize the general-relativistic theory of local reference systems onto the PPN
formalism were undertaken until now: Klioner & Soffel (2000) and Kopeikin & Vlasov (2004). Although
the two investigations are based on similar ideas and partially agree with each other, some important
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details were treated differently. Future investigations should clarify which approach is more adequate for
practical modelling of observations.

4. WELL-UNDERSTOOD PROBLEMS

Before proceeding to unsolved problems, it seems to be appropriate to give a list of problem which
can be considered as solved ones.

• Post-Newtonian relativistic reference systems. This includes the theory of both global and local
reference systems in the framework of general relativity, relativistic time scales, time synchronization
and dissemination.

• Post-Newtonian equations of motion for test particles and massive bodies having only masses and no
further structure of the gravitational field (the so-called Einstein-Infeld-Hoffmann (EIH) equations).

• Multipole structure of the post-Newtonian gravitational field. The Blachet-Damour multipole mo-
ments are used also in the IAU 2000 framework and represent a physically adequate and convenient
way to deal with gravitational fields of arbitrary structure in general relativity.

• Post-Newtonian equations of motion of bodies with multipole structure.

• Post-Newtonian equations of rotational motion.

• Post-Newtonian theory of light propagation.

• Some properties of the post-post-Newtonian effects, but by no means so detailed understanding as
for the post-Newtonian approximation.

Although all these topics are very well investigated from the theoretical point of view, it does not
mean that no difficulties in practical use of these results can occur. A number of known difficulties are
discussed in Section 6 below.

5. UNSOLVED AND POORLY KNOWN ISSUES

Let us now give a list of problems are still unsolved.

• Embedding of the post-Newtonian BCRS in the cosmological background. This question could be
important for the interpretation of high-accuracy observations (Gaia, VLBI, etc.). Although some
efforts in this direction have been started, the problem is far from being solved.

• Post-post-Newtonian relativistic reference systems (especially, the post-post-Newtonian definition
of local reference systems like the GCRS)

• Multipole structure of the post-post-Newtonian gravitational field. The Blanchet-Damour mo-
ments are defined only in the post-Newtonian approximation. No similar results in the post-post-
Newtonian approximation are known.

• The post-post-Newtonian equations of motion for N -body system. The post-post-Newtonian equa-
tions of motion (and even higher-order ones) are only known for a system of 2 bodies.

On the other hand, it is clear that the last 3 topic are currently not very interesting from the practical
point of view, the only application being binary and double pulsars. The situation can, however, change
very quickly if such observational techniques as laser ranging between spacecrafts become operational.
Such projects like Lisa and Astron may need the post-post-Newtonian equations of motion to predict the
motion of drag-free spacecraft with required accuracy.

6. ISSUES REPRESENTING PRACTICAL DIFFICULTIES

The problems listed in Section 4 above can be considered as solved from the theoretical point of view.
However some of them still represent a lot of difficulties for non-experts. Some other problems being well
understood theoretically still wait for practical implementation in numerical calculations. Let us give
some examples:
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• Although the general form of the post-Newtonian equations of motion of bodies with multipole
structure is well known, these equations have never been applied explicitly in their full complexity
in a numerical code. Important applications here are modelling of the figure-figure interaction in
the Earth-Moon system for LLR, the influence of the structure of the Earth’s gravity on the motion
of spacecrafts during the fly-by maneuvers, etc. An improvement of practical models is necessary
here.

• Numerical calculations with the post-Newtonian equations of rotational motion are rather tricky.
Although the equations themselves have been formulated about 15 years ago, the first numerical
results have appeared only recently (Klioner, Soffel, & Le Poncin-Lafitte, 2007).

• Relativistic time scales as a part of the IAU 2000 framework are traditionally difficult to understand
for “Newtonian-thinking people”. These time scales are (1) TCB and TCG as coordinate times of
BCRS and GCRS, respectively, as well as (2) TDB and TT as scaled versions of them (Soffel et
al., 2003; IAU, 2006). Although the concept of a coordinate time is crystal clear for people trained
in relativity, coordinate time scales may sometimes be very confusing for people using “Newtonian
common sense”. In the literature one can sometimes meet wrong statements about astronomical
time scales. For example, the following statements are wrong: (a) TCB is the time in the barycenter
of the solar system, (b) TCG is the time at the geocenter, (c) TT is the time on the rotating geoid,
(d) an ideal clock put in these three locations would keep TCB, TCG and TT, respectively. A
discussion of these and other issues concerning time scales can be found in (Brumberg, Kopeikin,
1990; Klioner, 2008).

• One more wrong statement about time scales is that for TDB no location could be found where
an ideal clock would keep it. and that this implies some non-SI “TDB seconds”. This statement
is probably one of the main reasons to introduce “TDB units” in various documents describing
astronomical reduction algorithms. Arguments why the scaling from TCB to TDB does not imply
any change of units have been put forward by Klioner (2008). Additional discussions and educational
efforts are necessary here to achieve a consensus.

Another group of difficulties is related to the fact that the mathematical techniques commonly in
use in relativity and in fundamental astronomy are sometimes very different. One example of different
mathematical languages in these two fields is the expression for the torque in the rotational equations of
motion. The relativistic torque cannot be written in terms of Legendre polynomials and their derivatives
as it is the case with the Newtonian torque. Special mathematical machinery of symmetric trace-free
(STF) tensors should be used for the relativistic torque. The corresponding mathematical expression
takes totally different form compared to the Legendre polynomials and this makes them difficult to
understand for the astronomical community (see Klioner, Soffel & Le Poncin-Lafitte (2008) for further
details).

Another example is related to analytical and numerical orders of magnitude. In typical calculations
in relativity the terms are taken into account or dropped based on their analytical order of smallness with
respect to c−1 (or in some cases with respect to the Newtonian gravitational constant G). For example,
the post-Newtonian approximation consists in taking into account all terms in the equations of motion
of the order of c−2 and neglecting all higher-order terms. On the other hand, for practical calculations
we should be more interested in numerical magnitudes of various terms rather than in their analytical
orders of smallness.

As an example of this controversy let us consider the post-post-Newtonian expression for the Shapiro
delay (gravitational time retardation) in the gravitational field of one spherically symmetric body with
mass M in the framework of an extended version of the PPN formalism. A light ray (a photon) is
propagating from position x0 where it is situated at moment t0 to another position x1. The goal is to
find moment t1 at which the light ray reaches x1. Denoting m = GM

c2 , R = |x1 − x0|, x0 = |x0|, and
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x1 = |x1| one has (Klioner, Zschocke, 2007)
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where β, γ and ǫ are three numerical parameters of the extended PPN formalism. All these three
parameters are equal to unity in general relativity and may have different numerical values in other
theories of gravity. The post-post-Newtonian terms can attain about 10 meters for experiments in the
solar system and should be taken into account for high-accuracy data. We see that this expression is quite
complicated compared to the usual post-Newtonian one given by the first line of (1). However, if one
estimates the numerical magnitudes of the post-post-Newtonian terms in (1) it turns out that only the
last term is numerically relevant. The last term can be written together with the main post-Newtonian
term in a compact way

c (t1 − t0) = R + (1 + γ) m log
x + x0 + R + (1 + γ) m
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. (2)

All other post-post-Newtonian terms together can be estimated as
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where d is the impact parameter of the light ray with respect to the gravitating body. Since d ≥ L,
L being the radius of the body, one concludes that for any solar system experiments Eq. (3) gives at
most 4 cm for a Sun-grazing ray. These terms can therefore be neglected for all present and planned
experiments. Eq. (2) coincides with Eq. (8-54) of Moyer (2000) who derived this equations in a different
and inconsistent way.

7. CONCLUSION

Applied relativity is a multidisciplinary research field. Progress here requires dedicated efforts both
from the side of theoretical work and from the side of practical implementation of relativistic concepts
and ideas into every-day astronomical practice. It is clearly a challenge to combine knowledge in theoret-
ical general relativity and in practical observational techniques and modelling of complex astronomical
phenomena (e.g. Earth rotation). For this reasons, one often fuzzily divides scientists into “experts in
relativity” and “people doing practical calculations”. For the former kind of people it is quite difficult to
understand what the second kind of people really need for their work. Vice verse, for “practical people”
it is not always easy to understand what the “theorists” suggest. Clearly, educational efforts on both
sides are indispensable for further progress in the field of applied relativity.
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