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ABSTRACT. We study analytically the effect of the existence of CMB (core-mantle boundary) topog-
raphy on the Earth’s nutation. To that aim, we have considered an Earth model with a rigid mantle, a
homogeneous and incompressible fluid core, and a slightly non-hydrostatic core-mantle boundary.

1. MOTIVATION AND RESEARCH DESIGN OF THE STUDY

This work is the first in a series of steps carrying out the progress of the European Descartes

Sub-project entitled: ”Computation of the topographic coupling at the core-mantle boundary and its ef-

fect on the nutation”. The principal milestones of the workplan and their specific objectives are as follows:

[1] Methodology and strategies to obtain the expressions for the topographic coupling:

• To establish the differential equations and boundary conditions describing the problem,

• To study the best analytical method for obtaining the solutions,

• To perform an analytical development of the coefficients describing the dynamic pressure, as function
of parameters of the boundary topography,

• To determine the topographic torque.

[2] Comparison with the results from Wu and Wahr (1997) using a numerical technique.

[3] Application of the results to other celestial bodies of the solar system.

2. DIFFERENTIAL EQUATIONS AND PRELIMINARY RESULTS

In order to describe the diurnal wobbles or nutations of the Earth, we consider the Liouville equations
for the angular momentum conservation. We have simplified the problem considering a rigid mantle and
a homogeneous and incompressible fluid core. With the objective of computing the topographic torque,
we have considered a slightly non-hydrostatic core-mantle boundary, from which we have computed the
topographic torque. To that aim, we need to establish the equations and the boundary conditions.

- Linearized Navier-Stokes equation:

∂
−→
V

∂t
= −

1

ρf

∇P +~b − ~ω × (~ω × ~r) − 2~ω × ~V −
∂~ω

∂t
× ~r (1)

where × indicates a cross-product, ~V is the velocity of the fluid relative to the reference frame, P

is the Eulerian pressure and ρf is the fluid density. The body force ~b = ▽Φ0 +∇φ1 +∇φe (sum of
the self unperturbed gravitational attraction ∇Φ0, the mass redistribution gravitational attraction
∇φ1, and the lunisolar gravitational attraction ∇φe per unit mass).
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- Boundary condition at the core-mantle boundary (CMB): ~̂n · ~V = 0 (~̂n is the normal to the surface);
it is expressed as a function of the boundary topography; the non-hydrostatic boundary surface is
expressed using: r = r0

[
1 +

∑
n=1

∑n

m=−n εm
n Y m

n (ϑ, λ)
]

(r0 is the surface mean radius)

- Condition of incompressibility: ∇ · ~V = 0.

Wu and Wahr (1997) obtained the solutions of the differential equations (1), after extensive develop-
ments, using a numerical technique of integration. Our purpose here is to work out such integration by
means of an analytical method in order to do a comparison between the two approaches. To this aim, we
have decomposed the velocity as: ~V = ~u + ~v = Ω L ~q + ~v, where L is the maximum radius of the core, ~v

is the Poincaré fluid velocity in the case of nutation and ~q is a non-dimensional velocity which equation
and conditions can be expressed as:






i σm ~q + 2 ~̂z × ~q + ∇Φ = 0

∇ · ~q = 0

~n · ~q + Ω−1 L−1~n · ~v = 0

(2)

where Φ = φ
Ω2 L2 and φ = p

ρf
+ χ, Φ being called the non-dimensional dynamic pressure and χ is an

unspecified function. The time dependence of the variables is considered as eiσt. When introduced in
non-dimensional equations as above, the frequency to be used is σm instead of σ, where σ = Ωσm. After
some algebra of the first equation of (2), one can obtain the following expression for ~q as a function of
∇Φ:

~q =
−i σm

4 − σ2
m

[
∇Φ −

2

i σm

~̂z ×∇Φ −
4

σ2
m

(~̂z · ∇Φ) ~̂z

]
where: Φ =

∑

l=1

ak
l Plk(

σm

2
)Y k

l (ϑ, λ) (3)

where ~̂z is the unit vector in the z-direction, Plk(σm

2
) and Y k

l (ϑ, λ) are, respectively, the Legendre poly-
nomials and the associated Legendre functions of the first kind.

Using the boundary condition for ~q (third equation of (2)) and the expression of ~q in function of Φ
(Eq. (3)), after a lot of developments, one obtains the analytical expressions for the coefficients ak

l at the
first order in the small quantities such as ǫm

n . The preliminary results are shown in Table 1, where we
have kept only the coefficients significantly higher than 0.1ǫm

n .

Coefficients Term in m+

f Term in m−

f

a0
1 0.4 ǫ13

a1
1 0.3 ǫ23

a0
2 −0.7 ǫ12

a−1
2 −1.0 ǫ02
a2
2 −0.2 ǫ12

a0
3 −3.5 ǫ13

a1
3 0.2 ǫ23 −0.6 ǫ03

a2
3 0.1 ǫ33 −0.3 ǫ13

a3
3 0.04 ǫ23

a0
4 −0.3 ǫ22 0.4 ǫ02

a−1
4 9.6 ǫ02

Table 1. Analytical expressions for ak
l in function of the parameters ǫm

n .
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