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1. THE CLASSICAL APPROACH: GINS

In today’s planetary orbitography softwares, as in GINS (Géodésie par Intégrations Numériques
Simultanées, developed by CNES 1 and GRGS 2), the motion of spacecrafts is still described
according to the classical Newtonian equations plus the so-called “relativistic corrections”, com-
puted with the required precision using the Post-(Post-) Newtonian formalism. Hence, it is the
3-vector acceleration (i = 1, 2, 3),

d2Xi

dT 2
=

∂W

∂Xi
+ non-gravitational accelerations + general relativistic corrections, (1)

which is numerically integrated with respect to coordinate time T . The gravitational potential
W includes not only the central planetary potential model but also the Earth-tide (due to
the Sun and Moon, corrected for Love number frequencies, ellipticity and polar tides) potential,
ocean-tide potential and Newtonian-perturbation potentials from other solar system bodies. The
atmospheric drag, the radiation pressure (solar radiation, Earth albedo, thermal emission) are
the non-gravitational perturbations considered. The orbitography software GINS also includes,
as relativisitic corrections, the Schwarzschild, geodesic and Lense-Thirring precessions [1].

2. THE (SEMI-CLASSICAL) RELATIVISTIC APPROACH: (SC)RMI

The classical Newton plus relativistic corrections method faces three major problems. First
of all, it ignores that in General Relativity time and space are intimately related. Secondly,
a (complete) review of all the corrections is needed in case of a change in conventions (metric
adopted), or if precision is gained in measurements. Today with the increase of tracking precision
(32 GHz Ka/Ka-Band Doppler radio tracking at at the level of 1 mm/s with respect to a relative
motion Earth/spacecraft of 10 km/s, i.e. with a relative accuracy of 10−13), active interplanetary
laser tracking (at the level of 10 cm with respect to a distance of 108 km, i.e. with a relative
accuracy of 10−9) and clock stabilities (Allan deviation of ∼4 10−14τ−1/2 for atomic fountains),
the classical method is reaching its limits in terms of complexity. The penalty for not taking
relativistic effects into account is the risk of polluting very weak geophysical effects, like the polar
motion of Mars (∼ 1 m in amplitude at the planet surface), or the signature on the nutations
of the liquid core of Mars (∼ a few cm over an amplitude of ∼10 m), by unwanted relativistic
effects that are at the same period (typically one planetary year, or 687 days for Mars), and,
worse, that can be cumulative (up to or larger than 10 m ranging error coming from relativity
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over one Mars orbit, ∼150 minutes). Thirdly, with such a classical method, one correction can
sometimes be counted twice (for example, the reference frequency provided by the GPS satellites
is already corrected for the main relativistic effect), if not forgotten. For those reasons, a new
approach, called (SC)RMI ((Semi-Classical) Relativistic Motion Integrator) [2], was suggested.

The relativistic equation of motion, when non-gravitational accelerations encoded in a 4-
vector Kβ [5] are present, is

dUα

dτ
= −Γα

βγUβUγ + Kβ

(

Gαβ
−

Uα

c2

Uβ

c2

)

with Uα
≡

dXα

dτ
, UαUα = c2 (2)

where Xα=0,1,2,3
≡

(

c · T, Xi
)

are the space-time coordinates; Γα
βγ are the Christoffel symbols,

functions of the derivatives of the space-time metric Gαβ ; and τ is the proper time. In the rela-
tivistic approach, it is those 4-dimensional equations (i.e. d2Xα

dτ2 ) which are directly numerically
integrated. For the appropriate metric at the required order, they contain all the gravitational
effects at the corresponding order. Indeed, computing the above equations for the Geocentric
Coordinate Reference System (GCRS) metric [3,4] will take into account gravitational mul-
tipole moment contributions from the central planetary gravitational potential, perturbations
due to solar system bodies, the Schwarzschild, geodesic and Lense-Thirring precessions. Non-
gravitational forces can be treated as perturbations, in the sense that they do not modify the
local structure of space-time (the metric). Moreover, Kβ being small, one can safely replace
Gαβ by its Minkowskian counterpart in the second term of the right-hand-side of equation (2),
hence the terminology “Semi-Classical” in SCRMI. When Kβ = 0, equation (2) reduces to the
geodesic equation of the local space-time.

3. THE PRINCIPLE OF ACCELEROMETERS

Last we show how to update the classical equation for accelerometers, in other words, how
to measure Kβ, or consider introducing a non-gravitational force model in the relativistic frame-
work. Let the satellite center of mass (CM) be located at Xµ; while a test-mass is at Xµ + δXµ,
in a cavity inside the satellite, hence shielded from non-gravitational forces. The test-mass mo-
tion is described by geodesic equations ((2) with Kβ=0) while that of the satellite is described
by (2). Evaluating the difference between those two equations at first order in δXµ gives a
general relativistic equation for accelerometers:

d2δXα

dτ2
= K

(CM)
β

(

Gαβ
−

dXα

dτ

dXβ

dτ

)

−

∂Γα
βγ

∂Xµ
δXµ dXβ

dτ

dXγ

dτ
− 2Γα

βγ

dXβ

dτ

dδXγ

dτ
(3)

Equation (3) reduces to geodesic deviation if K
(CM)
β =0.
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