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ABSTRACT. In the studies of Earth nutation involving electro-magnetic coupling at the core
boundaries inside the Earth, it is convenient to express the magnetic induction equation and the
Lorentz force density, as well as the magnetic field (B) itself, in generalized spherical harmonics
expansion (GSH). This is especially the case when the ellipticity of the interior structures and
boundaries are considered. In this work, the magnetic induction equation and the Lorentz force
density in the motion equation are derived to scalar format in GSH. In the resulted induction
equation of the perturbed magnetic field b caused by nutation, it is shown that the spheroidal
and toroidal part of b are decoupled with each other, although both of them involve the steady
part of B and the nutational displacement s (or velocity v) field. This theoretical result allows
one to solve b and s (or v) simultaneously.

1. INTRODUCTION

When interpreting the variation of earth rotation, like the decadal variation of the length-of-
day and the nutation, there are four candidates of coupling mechanics between the earth layers
interior, they are gravitational coupling, viscous coupling, topography coupling and electromag-
netic coupling between the liquid core and the mantle, and/or between the inner core and the
liquid core. In the nutation studies, using the angular momentum equation of the different
layers of the Earth (Buffett, 1992, 1993; Buffett et al., 2002; Mathews et al., 2002), the electro-
magnetic coupling is regarded as a very good interpretation to the gap between the observed
retrograde annual nutation and its theoretical value obtained by previous works without con-
sidering the contribution of the geomagnetic field. This paper discusses the coupling between
the geomagnetic field and the nutational motion in numerical integration approach in which
generalized spherical harmonics expansion (GSH) is used to provide a group of natural basis for
the representation of tensor of any order.

The magnetic field exists throughout the Earth, but the coupling effects may be considered
in the regions only near the two boundaries of fluid outer core (FOC) as discussed by Buffett et

al. for simplicity. When the contribution of the magnetic field is considered, the Lorentz force
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density, L, is to be added to the right hand of the motion equation. Meanwhile, the nutational
motion of the fluid interior will also cause an incremental magnetic field (as will be seen in
the induction equation) (Huang et al., 2004). Both the nutational motion and the incremental
magnetic field are time-varying. Consequently, the magnetic field and the velocity field are
coupled in both equations. It is therefore necessary to calculate the induced magnetic field and
the velocity field together.

The traditional motion equation for nutation without the contribution of magnetic field
has been given in integrable format in generalized spherical harmonics expansion (GSH), which
is used to provide a group of natural basis for the representation of tensor of any order, by
Smith(1974) and are used in the numerical integration approach for nutation (e.g., Huang et al.,
2001). Accordingly, it is needed to represent both the additional term (L) and the induction
equation by GSH too.

In the next section, after having introduced the vectorial induction equation in frequency
domain, we represent it and all the related variables in GSH, and the induction equation for the
toroidal and spheroidal parts of the perturbed magnetic field b is derived to a scale form which
is explicit and integrable; the new Lorentz force density in the motion equation is also developed
by the scalars of the magnetic field in Section 3. Then, the two equations, induction equation
and motion equation, are theoretically solvable for b and the displacement field s.

2. ON THE VECTORIAL MAGNETIC INDUCTION EQUATION

2.1. In frequency domain

The induction equation links the changes in the magnetic field to existing magnetic field in
the presence of flux velocities (enhancing) and of diffusion which tends to decrease the field.
This equation is often simplified in the frozen flux hypothesis when diffusion is ignored. This
approximation is perfectly valid at diurnal timescale. The general form of this equation, without
the pre-hypothesis of frozen flux (see for instance Moffatt, 1978) can be written as:

∂tB = ∇× (v × B) −∇× (η∇× B), (1)

where B is the magnetic field and v is the differential flux velocity.
In Earth nutation study, the flow relative to the mantle is assumed to be mainly a small

rigid rotation about an axis in the equatorial plane due to the free slip nutational motion of the
mantle.

When discussing the coupling between B and nutational velocity v, one can decompose B
into initial main part B0 and time-varying part b:

B(r, t) = B0(r, t) + b(r, t), (2)

where B0 varies very slowly in comparison with the nutation periods (in diurnal band) and can
be regarded as a steady part, while b is induced by v (or by the nutational deformation, s). b
can, in turn, perturb v and s. b can be expressed by a sum of Fourier series.

B(r, t) = B0(r) +
∑

ω

b(r, ω)eiωt, (3)

∂tB(r, t) = ∂tb(r, t) =
∑

ω

iωb(r, ω)eiωt, (4)

Without lost of generality, the flow velocity field v(r, t) (or s(r, t)) is also composed of a steady
flow part and a time dependent part. We also use the Fourier series of s(r, t) with the same
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frequency dependence as B, but allow for a time lag with respect to B(r, t), i.e., the velocity is
proportional to eiω(t−t0).

s(r, t) =
∑

ω

s(r, ω)eiωt, (5)

v(r, t) = ∂ts(r, t) = iωs(r, t) =
∑

ω

iωs(r, ω)eiωt. (6)

where b(r, ω) and s(r, ω) (or v(r, ω)) are complex vectors, which allows us to deal with a phase
lag between s (or v) and b.

The induction equation (1) can then be simplified to

∂tb(r, t) = ∇× (v(r, t) × B0(r)) −∇× (η(r)∇× b(r, t)), (7)

or in frequency domain

iωb(r, ω) = iω∇× (s(r, ω) × B0(r)) −∇× (η(r)∇× b(r, ω)), (8)

2.2. Representation in GSH

All the vectors in the equation above, B0(r, ω), b(r, ω) and s(r, ω) (as well as v(r, ω)) can
be represented by GSH (rather than the ordinary spherical harmonics) as:

B0(r) =

∞
∑

l=0

l
∑

m=−l

Bα
lm(r)Y α

lm(θ, φ)êα, (9)

b(r, ω) =
∞
∑

l=0

l
∑

m=−l

bα
lm(r, ω)Y α

lm(θ, φ)êα, (10)

s(r, ω) =
∞
∑

l=0

l
∑

m=−l

sα
lm(r, ω)Y α

lm(θ, φ)êα, (11)

where Y α
lm(θ, φ) are the GSH, and êα are the corresponding canonical unit basis vector (Dahlen

& Tromp, 1998; Phinney & Burridge, 1973; Huang & Liao, 2003).
Bα

lm is for B0 rather than B and assumed independent with time (or frequency), while all
other terms have been expressed in the nutational frequency domain by Fourier expansion. So
these terms depend on (r, ω) (or (r, ω)). In the following text, for simplifying the writing, we
express the variables in the frequency domain and we only discuss their amplitudes, i.e. we
speak about functions of (r, θ, φ, ω) and ignore the eiωt part.

2.3. The explicit scalar form

We define






Ulm = s0
lm

Vlm = s+
lm + s−lm

Wlm = s+
lm − s−lm

,







Flm = B0
lm

Glm = B+
lm + B−

lm

Hlm = B+
lm − B−

lm

,







flm = b0
lm

glm = b+
lm + b−lm

hlm = b+
lm − b−lm

. (12)

where (U, V,W ), (F,G,H) and (f, g, h) are the so-called radial, poloidal and toroidal scalars of
s, B0 (rather than the total field B) and b.

Using the properties of the GSH, the magnetic induction equation (8) then can be derived to
following explicit scalar form at diurnal timescale in terms of spheroidal and toroidal solutions
as:

0 = −η
Ω0

l

r

[

∂rglm + 1
r
glm −

2Ω0

l

r
flm

]

+iω

{

flm +
Ω0

l

r

∞
∑

k=0

k
∑

n=−k

l+k
∑

l′=|l−k|

f l′k
l × h̃0

lm

}

.
(13)
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0 = −η
[

∂2
r glm + 2

r
∂rglm −

2Ω0

l

r
∂rflm

]

−∂rη
[

∂rglm + 1
r
glm −

2Ω0

l

r
f0

lm

]

+iω

{

glm +
∞
∑

k=0

k
∑

n=−k

l+k
∑

l′=|l−k|

f l′k
l × h̃P

lm

}

.

(14)

0 = −η
[

∂2
r hlm + 2

r
∂rhlm − 2(

Ω0

l

r
)2hlm

]

−∂rη
[

∂rhlm + 1
r
hlm

]

+iω

{

hlm +
∞
∑

k=0

k
∑

n=−k

l+k
∑

l′=|l−k|

f l′k
l × h̃T

lm

}

.

(15)

where,

h̃0
lm =





l l′ k
+ 0 +
m m − n n



Ul′m−n

{

Gkn

Hkn

}

−





l l′ k
+ + 0
m m − n n



 Fl′m−n

{

Vkn

Wkn

}

if l + l′ + k even
if l + l′ + k odd

,

(16)

h̃P
lm ≡ h̃+

lm + h̃−
lm

=





l l′ k
+ 0 +
m m − n n





{

Ul′m−n∂rGkn + Gkn∂rUl′m−n + 1
r
Ul′m−nGkn

Ul′m−n∂rHkn + Hkn∂rUl′m−n + 1
r
Ul′m−nHkn

}

−





l l′ k
+ + 0
m m − n n





{

Vl′m−n∂rFkn + Fkn∂rVl′m−n + 1
r
Vl′m−nFkn

Wl′m−n∂rFkn + Fkn∂rWl′m−n + 1
r
Wl′m−nFkn

}

.

(17)

h̃T
lm ≡ h̃+

lm − h̃−
lm

=





l l′ k
+ 0 +
m m − n n





{

Ul′m−n∂rHkn + Hkn∂rUl′m−n + 1
r
Ul′m−nHkn

Ul′m−n∂rGkn + Gkn∂rUl′m−n + 1
r
Ul′m−nGkn

}

−





l l′ k
+ + 0
m m − n n





{

Wl′m−n∂rFkn + Fkn∂rWl′m−n + 1
r
Wl′m−nFkn

Vl′m−n∂rFkn + Fkn∂rVl′m−n + 1
r
Vl′m−nFkn

}

+
Ω0

l

r





l l′ k
0 + −

m m − n n





{

Wl′m−nGkn − Vl′m−nHkn

Vl′m−nGkn − Wl′m−nHkn

}

.

(18)

where the coefficients in the two braces above, as well as in the following text, take the upper
(or lower) values if l + l′ + k is even (or odd); the 3 × 3 matrix symbol, named J-square, is a
compact form of the product of two Wigner 3-j symbols, arising from the product of two GSHs,
and its nine indices subject to some selection rules (see Smith (1974) for detail); and

Ωn
l ≡

√

(l + n)(l − n + 1)/2. (19)

f l′k
l ≡

√

(2l′ + 1)(2k + 1)

4π(2l + 1)
. (20)
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3. THE LORENTZ FORCE DENSITY IN THE MOTION EQUATION

As mentioned above, when the contribution of the magnetic field is considered, the Lorentz
force density L is added to the right hand of the motion equation, i.e.,

ρD2
t s + 2ρΩ0 × Dts = −ρΩ0 × (Ω0 × s) + ∇ ·Te −∇(γ∇ · s)

−ρ∇φ1 − ρs · ∇∇φ + ∇ · [γ(∇s)T ] + L,
(21)

where all the notations are the same as in Smith (1974), and L is defined as

L ≡ J× B =
1

µ
B · ∇B =

1

µ
∇ · BB ≡

1

µ
∇ · M, (22)

where, µ is the magnetic permeability (rather than rigidity µ in the motion equation for nuta-
tion), J is the induced current, the dyad (or co-vector) BB is the Maxwell magnetic stress tensor
M, and the solenoidal condition about the magnetic field, ∇ · B = 0, is used in the Equation
above.

From the decomposition (eq.(2)),

M = B0B0 + B0b + bB0 + bb, (23)

the first term B0B0 does not contribute to nutation; moreover, the perturbed field is far smaller
than the main field (b ≪ B0), then bb or equivalently b · ∇b can be ignored in comparison
with the other terms. Therefore, the terms in L kept in the motion equation for nutation are

L ∼=
1

µ
(B0 · ∇b + b · ∇B0). (24)

The solenoidal condition for both B0 and b have been used again.
As the gradient of the incremental magnetic field is important and from the dimensional

analysis (Huang et al., 2005, in preparation), the second term can be ignored in comparison with
the first one. The horizontal derivatives in b is further assumed to be negligible in comparison
with the radial derivative (∇1b ≪ ∂rb) in the boundary layer (this assumption maybe too
strong. In fact, what we need is only that ∇rb ≡

1
r
∇1b ≪ ∂rb, this requirement, involving

further more a division by r for the horizontal gradient part, is more loose and more reasonable
than the first one). The Lorentz force is then written:

L ∼=
1

µ
Br

0∂rb. (25)

Analogously to the magnetic induction equation and the motion equation, L can then be
also expanded in GSH as

LR
lm ≡ [L]0lm = 1

µ

∞
∑

k=0

k
∑

n=−k

l+k
∑

l′=|l−k|

f l′k
l





l l′ k
0 0 0
m m − n n



Fl′m−n∂rfkn

LP
lm ≡ [L]+lm + [L]−lm = 1

µ

∞
∑

k=0

k
∑

n=−k

l+k
∑

l′=|l−k|

f l′k
l





l l′ k
+ 0 +
m m − n n





{

Fl′m−n∂rgkn

Fl′m−n∂rhkn

}

LT
lm ≡ [L]+lm − [L]−lm = 1

µ

∞
∑

k=0

k
∑

n=−k

l+k
∑

l′=|l−k|

f l′k
l





l l′ k
+ 0 +
m m − n n





{

Fl′m−n∂rhkn

Fl′m−n∂rgkn

}

, (26)

These three scalars of L can then be used directly in the new motion equation as in Smith(1974).
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4. SHORT REMARKS

In section 2, we present the induction equation about the perturbed magnetic field b as three
scalar ordinary differential equations by GSH, they depends on the initial main magnetic field
B0 and the nutational displacement field s; meanwhile, in the new motion equation about s, the
Lorentz force density L is also related to B0 and b; and B0 can be obtained beforehand from
any geodynamo model (so h̃0

lm, h̃P
lm and h̃T

lm are known), therefore b and s can be theoretically
solved from these two equations. In practice, all the upper limits of the sum over l, l′ (and/or
k, n) are set to a definite number (10, for example), because, the magnetic field is given in the
harmonic series up to that fixed degree.

Moreover, in the resulted induction equations, the spheroidal part (eq.(13) and (14)) and
the toroidal part (eq.(15)) of b are decoupled with each other, although both of them involve
B0 and s. This result makes the equations solvable more easily.
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