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ABSTRACT. We consider 4 libration models : 3 numerical models built by JPL (ephemerides
for the libration in DE245, DE403 and DE405) and an analytical model improved with numerical
complements fitted to recent LLR observations. The analytical solution uses 3 angular variables
(p1, p2, τ) which represent the deviations with respect to Cassini’s laws. After having referred
the models to a unique reference frame, we study the differences between the models which
depend on gravitational and tidal parameters of the Moon, as well as amplitudes and frequen-
cies of the free librations. It appears that the differences vary widely depending of the above
quantities. They correspond to a few meters displacement on the lunar surface, reminding that
LLR distances are precise to the centimeter level. Taking advantage of the lunar libration the-
ory built by Moons (1984) and improved by Chapront et al. (1999a) we are able to establish 4
solutions and to represent their differences by Fourier series after a numerical substitution of the
gravitational constants and free libration parameters. The results are confirmed by frequency
analyses performed separately. Using DE245 as a basic reference ephemeris, we approximate
the differences between the analytical and numerical models with Poisson series. The analytical
solution - improved with numerical complements under the form of Poisson series - is valid over
several centuries with an internal precision better than 5 centimeters.

1. PRESENTATION OF THE MODELS

• Cassini’s laws. The lunar libration is characterized by small oscillations around an equi-
librium position governed by Cassini’s laws: (i), the rotation period of the Moon is identical
to its circulation period in the orbital motion; (ii), the inclination of the lunar equator on the
ecliptic is a constant; (iii), the secular motions of the nodes N and N ′ on the ecliptic of the
orbital plane and the lunar equator are identical (see Fig. 1).

• The variables. A selenodesic system of axes (ξ, η, ζ) along the principal moments of inertia
(A, B, C) is connected with the ecliptic system (X, Y , Z) by 3 Euler’s angles (φ, ψ, θ) as shown
on Fig. 1. Three position angles denoted by (p1, p2, τ) express the small oscillations around the
equilibrium position. They are referred to Euler’s angles by the relation:

p1 = sinφ sin θ; p2 = cosφ sin θ; τ∗ = φ+ ψ or τ = τ∗ − w1 − 180◦

where w1 is the mean longitude of the Moon. p1 and p2 are the components of the unit vector
pointing towards the mean pole of the ecliptic of date on the two lunar equatorial principal axes
of inertia; τ is the libration in longitude. In the analytical theory the position variables are (p1,
p2, τ). In the 3 JPL lunar ephemerides Euler angles are used instead.
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Figure 1: Ecliptic frame, selenodesic system of reference, and Euler’s angles

Table 1: Parameters of the various models

Fundamental arguments DE245 DE403 DE405 SLLR(ICRS)
φ -0.07355 -0.05294 -0.05028 -0.05542
ǫ− 23◦26′21” 0.40580 0.4092 0.40960 0.41100

w
(0)
1 − 218◦18′59” 0.83482 0.87484 0.87267 0.8782

w
(1)
1 − 1732559343 ”/Cy 0.35614 0.35624 0.32953 0.3328

w
(2)
1 ”/Cy2 -6.7996 -6.7772 -6.8368 -6.8700

Earth figure parameters
Units of 10−4

C30 -0.086802 -0.086474 -0.087855 -0.086802
C31 0.307083 0.307083 0.308038 0.307083
C32 0.048737 0.048727 0.048798 0.048737
C33 0.017161 0.017655 0.017702 0.017161
S31 0.046115 0.044875 0.042593 0.046115
S32 0.016975 0.016962 0.016955 0.016975
S33 -0.002844 -0.002744 -0.002710 -0.002844
γ 2.278860 2.278642 2.278583 2.278860
β 6.316191 6.316107 6.316121 6.316191

C
mR2 3948.723999 3950.296917 3952.951990 3948.723999

Free libration√
2P 0.2933 0.2915 0.3047 0.2919√
2Q 5.1924 5.2095 5.1860 5.2722√
2R 0.0208 0.0218 0.0089 0.0217

p0 degree 224.3029 224.3095 229.5037 224.2277
q0 degree 161.6400 161.7655 160.9133 161.0477
r0 degree 124.3936 109.6807 164.2453 98.7506
ωp (observed) ”/Cy 44820553.89 44820553.89 44819747.03 44820417
ωq (observed) ”/Cy 1736494.75 1736523.38 1736520.37 1736493.0
ωr (computed) ”/Cy -5364715.23 -5364708.34 -5364600.06 -5364715.23
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• The libration theory. The analytical theory of the lunar libration that we use is due to
Moons (1981, 1982 and 1984). It contains ’forced libration’ and ’free libration’ series. All
the components of the Moons’ series are described in (Chapront et al., 1999a) that include
also further improvements due to the authors. The literal parameters which enter the ’forced
libration’ are: β = C−A

B
, γ = B−A

C
, where A, B and C are the lunar principal moments of inertia;

and the ratios of the coefficients Ci,j , Si,j, (i = 3, 4, 0 ≤ j ≤ i) to C
mLR2

L

, where mL and RL

are the lunar mass and equatorial radius. The corresponding Fourier series are developped with
angular variables which are linear combinations of the 4 Delaunay’s arguments D, F , l, l′, the
planetary mean longitudes λk (1 ≤ k ≤ 8) and ζ, the lunar mean longitude referred to the mean
equinox of date. The tidal perturbations introduce time-dependant analytical corrections ∆Ci,j

and ∆Si,j to the harmonics Ci,j and Si,j. The ’free libration’ is described by 3 literal parameters√
2P ,

√
2Q,

√
2R (constants of integration). In the corresponding Fourier series enter the 3

arguments of the free libration denoted by p, q, and r in addition to Delaunay’s arguments.

• Frame and constants. A comparison between various JPL ephemerides of number n, i.e.
DEn = DE245,DE403,DE405, and the analytical solution fitted to LLR observations, supposes
that we use in all solutions the same set of constants and the same reference frame. Using the
analytical theory ELP for the orbital motion of the Moon, by comparison with the JPL lunar
ephemeris, we determine the reference frames of DEn referred to the ecliptic and the inertial
mean equinox for J2000.0, as well as the lunar mean longitude w1 referred to a fixed equinox.
The basic angles are: φ, separation between the origin of right ascensions of DEn and the
inertial equinox of J2000.0 along the equator of DEn, and ǫ, the obliquity of DEn (Chapront,
et. al., 1999b, 2002). Having brought the solutions in the same frame of reference, and using the
sets of physical parameters listed in Table 1, a frequency analysis on the residuals between the
analytical and the numerical models allows to evaluate the amplitudes of the ’free libration’, i.e.
the numerical values of literal parameters

√
2P ,

√
2Q,

√
2R, as well as the libration frequencies:

ωs, (s = p, q, r), with the following notations: p = ωpt+ p0, q = ωqt+ q0, r = ωrt+ r0; we call
these frequencies ’observed values’ in the sense that they are obtained by an ajustment to an
ephemeris which represents the observations. Besides, the frequencies ωs can be computed from
their literal expressions provided by the theory; we call them ’computed values’.

2. COMPARISONS OF THE MODELS WITH DE245 AS REFERENCE

• A semi-analytic form of the libration series. On the basis of the analytical series, we
have established 4 various solutions Sn (S245, S403, S405, SLLR) under the form of Fourier series
with numerical coefficients. For each solution Sn, the coefficients have been computed with
the numerical values given in Table 1. Hence, we have generated the series pn

1 , pn
2 and τn for

any of the solutions Sn corresponding to the 3 JPL ephemerides DEn and to the ephemeris
ELLR obtained by the authors with a LLR fit (see description hereafter). The quantities which

are retained to adjust the solutions are φ, ǫ, w1 = w
(0)
1 + w

(1)
1 t + w

(2)
1 t2, the free libration

parameters (amplitude, phases and frequencies for p, q and r). In all the analytical series Sn,
the arguments are linear combinations of Delaunay’s arguments, planetary longitudes, ζ, and
the angles p, q and r, whose frequencies are ’observed’ through harmonic analysis as mentioned
above. Nevertheless r cannot be determined with enough accuracy by harmonic analysis. We
used the ’computed’ value instead. The ephemeris ELLR which corresponds to our fit to LLR
observations is derived from DE245. We have first established numerical complements to the
analytical solution S245, i.e. ρ245, in order to get S245 + ρ245 = DE245. Next, we have fitted
the parameters to the LLR observations covering the period [1974-2002] (Chapront et al., 2002).
Using the values of the fitted paramers, we have obtained a new solutions SLLR and a new
ephemerides ELLR = SLLR + ρ245.
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• A crude comparison of the models. We choose as a reference DE245 which is also the model
providing the Earth figure parameters in SLLR. Formely, this solution has been a reference to
elaborate the numerical complements to ELP and the libration ephemeris (Chapront et al., 1997).
We compute for the 3 variables p1, p2 and τ the differences: ∆En = DEn−DE245 for DE403 and
DE405; in case of the LLR ephemerides, we form the difference: ∆ELLR = ELLR −DE245. Over
a short time interval (1968-2010) we illustrate the differences on Fig. 2. For the variable τ , the
graphs ’∆E405’ and ’∆E403’ have been shifted as follows: τ405−τ245+3”.9; τ403−τ245+2”.2. The
differences ∆En reach maximum values as large as 0”.3. That represents on the lunar surface
a displacement of a few meters while the individual LLR observations have an accuracy at the
centimeter level. In the process of comparisons and fits to observations, the scatter between the
models is reflected on the determinations of the frames, the values of the physical parameters,
the positions and velocities of the stations and reflectors.
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Figure 2: Differences of various models with respect to DE245; (a) light grey: ∆E405 = DE405 −
DE245; (b) dark grey: ∆E403 = DE403 −DE245; (c) black: ∆ELLR = ELLR −DE245

• Approximation of the differences. The solutions although they are far from each others, can
be brought closer in a very simple manner with the aid of the analytical solution. In the case of
DE405 (Standish, 1998), on one side we build the differences on the source ephemerides ∆E405 =
DE405 −DE245; on the other side we build the differences on the analytical solutions ∆S405 =
S405−S245. An identical work can be performed with DE403 with results qualitatively very close.
The residuals between ∆E405 and ∆S405 are shown on Fig. 3. They are explicitely described
with short series of about ten terms. The extremum between the residuals are about 0”.01 over
3 centuries. Using a sofware due to Mignard (2003), we have performed a frequency analysis
of the differences ∆E405 and we have obtained ∆E∗

405. The related differences ∆E405 − ∆E∗

405,
which are also represented on Fig. 3, are smaller than above (≤ 0”.005) which corresponds to the
centimeter level. We note also that this approximation is valid on a very long time interval: [1750-
2050]. It is worth noticing that we find in ∆E∗

405 the main arguments (or frequencies) explicitely
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given in the analytical differences ∆S405. For the variable τ , the deviation in ∆E405 − ∆S405 is
due to 2 periodic terms with close frequencies. Only one exists in S405, the second one has been
detected by harmonic analysis.
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Figure 3: Comparison between numerical and analytical differences for DE405; (a) light grey:
Analytical solution, ∆E405 − ∆S405 (b) black: Frequency analysis, ∆E405 − ∆E∗

405

3. PSEUDO-ANALYTICAL COMPLEMENTS WITH POISSON SERIES

Since we have at our disposal an analytical representation of the libration series (p1, p2, τ),
and in particular a list of arguments (or frequencies) corresponding to the Fourier terms , we
have completed and improved the analytical series by Poisson series. We have used a method
which has been formely elaborated to improve, over a long time span, planetary analytical series
(Chapront, 2000). We compute the differences between the numerical ephemeris and give to
any variable σ the following form which is called Pn, or Poisson approximation of the difference
En − Sn related to the ephemeris En = DEn or ELLR:

σ = σ0 + σ1t+
∑

[j]

∑

k

(C
(k)
0 + C

(k)
1 t) cos(j1λ1 + j2λ2 + ...) + (S

(k)
0 + S

(k)
1 t) sin(j1λ1 + j2λ2 + ...)

The numerical coefficients σs, C
(k)
s , S

(k)
s , (s = 0, 1), are determined by least square fits. On

the Fig. 4, in the case of DE245, one represents the differences En − Sn between numerical and
analytical ephemerides and a comparison to its approximation Pn. The graph ’En − Sn’ shows
the crude differences between the numerical and the analytical model. The graph ’En−(Sn+Pn)’
shows the small-sized residuals after the approximation of the analytical solution with Poisson
series. The maximum of the differences is of the order of 0”.01.
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4. CONCLUSION

This study puts in evidence that it is possible to pass from a model of the lunar libration to
another one, with the addition of short Fourier series. Besides, a chosen analytical solution Sn

completed by Poisson terms represent the libration variables with a great accuracy over several
centuries. Our final choice is the solution fitted to the LLR observations, SLRR. A complete ana-
lytical model plus its pseudo-analytical complements, as well as a FORTRAN software to built an
ephemeris of the libration variables, can be found on the website : http://syrte.obspm.fr/polac.
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Figure 4: Improvement of the differences DE245 − S245 with Poisson series; (a) light grey:
DE245 − S245; (b) black: DE245 − (S245 + P245)
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Chapront, J., Chapront-Touzé, M. and Francou G.: 1999a, Celest. Mech. Dyn. Astr. 73, 317.
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Chapront, J., Chapront-Touzé, M. and Francou G.: 2002, A&A 387, 700.
Mignard, F.: 2003, FAMOUS (Frequency Analysis Mapping On Unusual Sampling), Software.
Moons, M.: 1981, Libration physique de la Lune, Thesis, Facultés Universitaires de Namur.
Moons, M.: 1982, The Moon and the Planets, 27, 257.
Moons, M.: 1984, Celest. Mech. Dyn. Astr. 34, 263.
Standish, E.M.: 1995, JPL Planetary and Lunar Ephemerides, DE403/LE403, IOM 314-10-127,

Pasadena.
Standish, E.M.: 1998, JPL Planetary and Lunar Ephemerides, DE405/LE405, IOM 321.F-98-

048, Pasadena.

221


