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ABSTRACT

Context. The 2006 IAU General Assembly has adopted the P03 model of Capitaine et al. (2003a) recommended by the WG on
precession and the ecliptic (Hilton et al. 2006) to replace the IAU 2000 model, which comprised the Lieske et al. (1977) model with
adjusted rates. Practical implementations of this new “IAU 2006” model are therefore required, involving choices of procedures and
algorithms.
Aims. The purpose of this paper is to recommend IAU 2006 based precession-nutation computing procedures, suitable for different
classes of application and achieving high standards of consistency.
Methods. We discuss IAU 2006 based procedures and algorithms for generating the rotation matrices that transform celestial to
terrestrial coordinates, taking into account frame bias (B), P03 precession (P), P03-adjusted IAU 2000A nutation (N) and Earth
rotation. The NPB portion can refer either to the equinox or to the celestial intermediate origin (CIO), requiring either the Greenwich
sidereal time (GST) or the Earth rotation angle (ERA) as the measure of Earth rotation. Where GST is used, it is derived from ERA
and the equation of the origins (EO) rather than through an explicit formula as in the past, and the EO itself is derived from the
CIO locator.
Results. We provide precession-nutation procedures for two different classes of full-accuracy application, namely (i) the construction
of algorithm collections such as the Standards Of Fundamental Astronomy (SOFA) library and (ii) IERS Conventions, and in addition
some concise procedures for applications where the highest accuracy is not a requirement. The appendix contains a fully worked
numerical example, to aid implementors and to illustrate the consistency of the two full-accuracy procedures which, for the test date,
agree to better than 1 µas.
Conclusions. The paper recommends, for case (i), procedures based on angles to represent the PB and N components and, for case (ii),
procedures based on series for the CIP X,Y . The two methods are of similar efficiency, and both support equinox based as well as
CIO based applications.
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1. Introduction

Resolution 1 of the XXVIth General Assembly of the
International Astronomical Union (Prague 2006) adopted the
recommendation of the Working Group on precession and
the ecliptic (Hilton et al. 2006) to introduce from 2009 the “P03”
models of Capitaine et al. (2003a). P03, that we will here refer
to as “IAU 2006 precession”, supersedes the IAU 2000 preces-
sion. The latter comprised the precession of Lieske et al. (1977)
with simple rate corrections (Mathews et al. 2002); the IAU 2006
models provide a replacement that is consistent with dynamical
theory.

In this paper we provide detailed and efficient procedures,
including numerical examples, for implementing the IAU 2006
precession in applications that, as is normally the case, also in-
volve nutation and Earth rotation. The recommended procedures
offer different blends of canonical rigor, internal consistency,
flexibility and ease of use. The choices address a range of per-
formance needs, from cases where low accuracy (∼1 arcsec) is

� Appendix is only available in electronic form at
http://www.aanda.org

sufficient to applications requiring sub-microarcsecond preci-
sion, and support the use of both the equinox and the celestial
intermediate origin (CIO).

The IAU resolution adopting the P03 precession does not
stipulate a specific parameterization, expressly stating that the
user makes this choice. The starting point for the procedures
recommended by the present paper was the wide range of op-
tions discussed in Capitaine & Wallace (2006), denoted C06 in
the following. That paper identifies a variety of different ap-
proaches, including six ways of forming the bias-precession-
nutation (NPB) matrix, three ways of generating the position
of the celestial intermediate pole (CIP) and eight ways of lo-
cating the celestial intermediate origin (CIO). By examining the
needs of two important but representative applications, namely
the SOFA software (Wallace 1998) and the IERS Conventions
(2003), we have developed two procedures that can be rec-
ommended for general use and that achieve high standards of
consistency, both internal and mutual.

In this paper we use the basic precession angles only for nu-
merical comparison purposes, and the two procedures recom-
mended for practical use start with (different) derived quantities.
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The two procedures aim in particular to provide the 3 × 3 matri-
ces MCIO and R in the expressions:

uTIRS = R(TT,UT) · uGCRS,

uCIRS = MCIO(TT) · uGCRS, (1)

where the 3-vector uGCRS is a direction in the GCRS and uCIRS
and uTIRS are the same direction with respect to the celestial in-
termediate and terrestrial intermediate reference systems.

Also of interest is Mclass, the classical (i.e. equinox based)
counterpart to MCIO. These matrices are related to each other and
to the GCRS-to-TIRS matrix R by the expressions (discussed
in C06, Sect. 4.2):

R = R3(ERA) ·MCIO

= R3(ERA) · R3(−EO) ·Mclass

= R3(GST) ·Mclass, (2)

where ERA is the Earth rotation angle, GST is the Greenwich
sidereal time and EO = ERA−GST is the equation of the origins.

The recommendations made in this paper differ from past
procedures in the sense that in both approaches (equinox or CIO
based) the fundamental expression for measuring Earth rotation
is the ERA and the quantity s is used to locate the CIO on the
equator of the celestial intermediate pole.

The Earth rotation angle has a conventional linear relation-
ship with UT1 (see Capitaine et al. 2000):

θ(Tu) = 2π ( 0.7790572732640

+1.00273781191135448 Tu), (3)

where Tu = (Julian UT1 date − 2451545.0), and UT1 = UTC +
dUT1. UTC is Coordinated Universal Time and dUT1, provided
by the IERS, is UT1 − UTC1.

IERS Conventions (2003) obtains s by evaluating a series for
s + XY/2 (which is too large to be reproduced here but is avail-
able electronically2), and this probably remains the best method
overall: the series for s + XY/2 + D (cf. C06, Sect. 4.1) is more
concise, but the real performance gains are arguably outweighed
by the extra complications. Once the CIP coordinates X, Y are
available, s can be obtained.

The two full-accuracy procedures to be described start, re-
spectively, with angles to represent the bias, precession and nu-
tation components (Sect. 2) and with series that generate the CIP
X, Y vector components directly (Sect. 3). Table 1 provides the
number of terms of the development series used in the proce-
dures described in Sects. 2 and 3 with a cut-off of 0.1 µas after
a century. The X, Y series based procedure includes for the first
time the ability to generate equinox based as well as CIO based
products. This is done by introducing, as an additional basis, the
same ecliptic as that used in the angles based procedure, thus
ensuring a high degree of consistency and symmetry between
these two hitherto quite distinct schemes. Finally, for applica-
tions where a different trade-off between speed and accuracy is
required, Sect. 4 provides a selection of simplified algorithms.

1 As with any rapidly changing angle, for high-precision purposes it
is important to arrange the calculation of θ in such a way that rounding
errors are minimized. This involves eliminating integer multiples of 2π
at as early a stage as possible.

2 Tables for the P03 series for X, Y and s + XY/2 are available at the
CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/459/981,
and at http://syrte.obspm.fr/iau2006.

Table 1. Comparison between various series for (i) the precession-
nutation angles (first four lines; see Sect. 2) and (ii) the GCRS CIP X,Y
coordinates (final two lines; see Sect. 3); 0.1 µas resolution.

quantity number of terms in
t0 t t2 t3 t4 t5

γ̄ 1 1 1 1 1 1
φ̄ 1 1 1 1 1 1
ψ̄ 1321 38 1 1 1 1
εA 1038 20 1 1 1 1
X 1307 254 37 5 2 1
Y 963 278 31 6 2 1

s + XY/2 34 4 26 5 2 1

The appendix contains a fully worked numerical example,
in sufficient detail to overcome any implementation difficulties.
The material also illustrates the consistency of the two full-
accuracy procedures. For the test date in 2006, the agreement is
better than 1 µas. Other trials showed that even after 2 centuries
the largest differences are under 10 µas (cf. C06 Fig. 6).

In all cases it must be understood that the algorithms are op-
timized for the current era, say 1800−2200. For more remote
dates they must be used with circumspection. This is especially
true of the X, Y series based procedure (Sect. 3).

2. Procedure based on bias-precession
and nutation angles

For many applications, rather than developing a specialized so-
lution it is better to make use of existing tools, in the form
of a general-purpose suite of algorithms that can be combined
in various ways. For such a suite, canonical rigor is an im-
portant consideration, but convenience and efficiency must also
be taken into account. To achieve a balance, some use of de-
rived quantities is acceptable, as long as they are clearly trace-
able to published models. Internal consistency is of paramount
importance, and overall the result must be concise, modular
and easily understood, as well as versatile and comprehensive.
These requirements lie behind the design of general-purpose
software libraries, such as that provided by the IAU Standards
Of Fundamental Astronomy initiative (SOFA, Wallace 1998).

One aspect of the need for versatility is that such a library
must support both the traditional equinox based methods and
the newer CIO based methods. The obvious approach is simply
to provide separate facilities for the two methods. However, not
only would this be at odds with the need for conciseness (for a
start, duplication of the nutation series, which are large, must be
avoided) but numerical consistency would be hard to guarantee.

A better plan is first to identify a complete but non-redundant
set of canonical models, and then to use them in different ways
to achieve the full range of quantities and transformations. For
example, a comprehensive suite of high-precision precession-
nutation and matching Earth rotation functions can be derived
from the following basic components:

1. A precession model, in this case IAU 2006.
2. A nutation model, in this case IAU 2000A with slight adjust-

ments to make it compatible with the IAU 2006 precession.
3. A model for the quantity s, to locate the CIO on the

CIP equator, that is consistent with the adopted precession-
nutation model.

4. The expression for Earth rotation angle as a function of UT1.
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The products that can be derived from these components include:

– Precession-nutation matrices, that rotate GCRS coordinates
into either CIP/CIO coordinates or CIP/equinox coordinates.

– The equation of the origins, EO=ERA−GST, which is the
distance between the CIO and equinox and provides the link
between the two approaches.

– Greenwich (apparent) sidereal time, GST.

The non-redundancy in the set of canonical models naturally
delivers a concise result but, more importantly, ensures consis-
tency. Where a given application – the computation of hour an-
gles is a prime example – can be implemented by more than one
route, the answers will agree rigorously, limited only by different
computational rounding errors.

In the above proposal, it is important to note what is not in-
cluded in the list of canonical models. There is no need for a for-
mula giving Greenwich mean sidereal time, something that has
in the past always accompanied a new precession model. Nor
are there series for either the equation of the equinoxes or the
equation of the origins. All of these quantities could, if neces-
sary to support older applications, be derived from the canonical
bases listed. The non-redundant design not only leads to numeri-
cal consistency, with no examples of multiple models competing
with each other, but also allows the canonical components to be
replaced individually if and when required, including new pre-
cession models, use of simplified nutation series etc.

2.1. Computation of the basis quantities

For the IAU 2006 precession model, the recommended pa-
rameterization is the 4-rotation Fukushima-Williams method
(Fukushima 2003). This is concise and versatile, and can be re-
ferred directly to the GCRS pole and origin without requiring
the frame bias to be applied separately. The Fukushima-Williams
angles with respect to the GCRS are obtained using the follow-
ing series (from Table 1 of Hilton et al. 2006):

γ̄ = −0.′′052928+ 10.′′556378 t + 0.′′4932044 t2

−0.′′00031238 t3 − 0.′′000002788 t4

+0.′′0000000260 t5

φ̄ = +84381.′′412819− 46.′′811016 t + 0.′′0511268 t2

+0.′′00053289 t3 − 0.′′000000440 t4

−0.′′0000000176 t5

ψ̄ = −0.′′041775+ 5038.′′481484 t + 1.′′5584175 t2

−0.′′00018522 t3 − 0.′′000026452 t4

−0.′′0000000148 t5

εA = +84381.′′406 − 46.′′836769 t − 0.′′0001831 t2

+0.′′00200340 t3 − 0.′′000000576 t4

−0.′′0000000434 t5. (4)

The IAU 2000A nutation components ∆ψ2000A and ∆ε2000A are
from the luni-solar and planetary terms of the Mathews et al.
(2002) series, as set out in the MHB_2000 code, which is avail-
able electronically from the IERS. The small corrections that
make the IAU 2000A nutation consistent with the IAU 2006 pre-
cession (Capitaine et al. 2005, Sect. 3.6) are made as follows:

∆ψ = ∆ψ2000A + (0.4697 × 10−6 + f )∆ψ2000A

∆ε = ∆ε2000A + f∆ε2000A (5)

where f ≡ (J̇2/J2)t = −2.7774× 10−6 t, and t is the time interval
since J2000 in Julian centuries (TT).

The remaining basis quantities are (i) the quantity s, which
can be obtained from the series for s + XY/2 (Sect. 1) once X
and Y are available (Sect. 2.2) and (ii) the Earth rotation angle,
which is obtained from Eq. (3).

2.2. Computation of the NPB matrices

The IAU-2006-compatible nutations given by Eq. (5) can be
used to transform the PB angles γ̄, φ̄, ψ̄, εA given by Eq. (4) into
NPB angles γ̄, φ̄, ψ, ε simply by adding the nutations to the cor-
responding two angles:

ψ = ψ̄ + ∆ψ,

ε = εA + ∆ε. (6)

These angles3 can be used to form the equinox based NPB ma-
trix if required:

Mclass = R1(−ε) · R3(−ψ) · R1(φ̄) · R3(γ̄). (7)

However, in order to obtain the CIO based NPB matrix MCIO,
we do not require the whole of Mclass. The bottom row is the
GCRS unit vector to the CIP, and so the CIP X, Y coordinates can
be efficiently computed using the expressions for elements [3,1]
and [3,2] only:

X = sin ε sinψ cos γ̄ − (sin ε cosψ cos φ̄

− cos ε sin φ̄) sin γ̄,

Y = sin ε sinψ sin γ̄ + (sin ε cosψ cos φ̄

− cos ε sin φ̄) cos γ̄. (8)

In high-accuracy applications, these X, Y predictions can be sup-
plemented by adding IERS corrections dX, dY, to take account
of VLBI observations and in particular to compensate for the
free core nutation (∼0.3 mas).

With X, Y and s + XY/2 now available, the quantity s can be
calculated.

The remaining seven elements of the CIO based NPB matrix
MCIO are functions of X, Y and s (cf. C06, Eq. (25)):

MCIO[1, 1] = cos s + aX(Y sin s − X cos s)

MCIO[1, 2] = − sin s + aY(Y sin s − X cos s)

MCIO[1, 3] = −(X cos s − Y sin s)

MCIO[2, 1] = sin s − aX(Y cos s + X sin s)

MCIO[2, 2] = cos s − aY(Y cos s + X sin s)

MCIO[2, 3] = −(Y cos s + X sin s)

MCIO[3, 1] = X

MCIO[3, 2] = Y

MCIO[3, 3] = Z (9)

where Z = (1 − X2 − Y2)1/2 and a = 1/(1 + Z).
It should be noted that, although Eqs. (9) are rigorous, s is so

small in the present era that writing s (in radians) for sin s and 1
for cos s would be acceptable, introducing errors much smaller
than come from the resolution of the series used to obtain s.

The matrix MCIO can be used to transform GCRS vectors
into the celestial intermediate reference system (CIRS), with on-
ward transformation into the terrestrial intermediate reference

3 The same formulation provides convenient access to two other ma-
trices. Omitting nutation, i.e. using ψ̄ and εA instead of ψ and ε, will
produce the PB matrix. Evaluating γ̄, φ̄, ψ̄ and εA for the date J2000.0
will produce the B matrix, i.e. frame bias on its own.



984 P. T. Wallace and N. Capitaine: IAU 2006 precession-nutation procedures

system (TIRS) requiring only the Earth rotation angle. Similarly,
the matrix Mclass can be used in an equinox based application
to express GCRS vectors with respect to the true equator and
equinox of date, but in this case the transformation into terres-
trial coordinates requires Greenwich sidereal time (GST). In the
past this has always been done using an explicit GST(UT1) for-
mula, but that approach introduces a number of complications
for high-precision applications: the formulas are rather compli-
cated, involve both UT1 and dynamical time, and have to match
the adopted precession model.

The approach advocated here avoids the need for such a
GST(UT1) formula by instead expressing GST in terms of the
Earth rotation angle (cf. Capitaine et al. 2003b, Eqs. (40), (41)).
The difference ERA−GST, namely the equation of the origins,
is a function of Mclass and s, and can be obtained as follows (see
C06, Sect. 4.5).

2.3. Computation of EO and GST

From C06 Eq. (24) we obtain:

Mclass = R3(−[−EO + s] ) ·MΣ (10)

and hence

R3(EO − s) = Mclass ·MT
Σ (11)

where the matrix MΣ is given by C06 Eq. (4). Writing out ele-
ments (1,1) and (2,1) of the 3 × 3 matrix R3(EO − s), we obtain

cos (EO − s) = Υ · Σ
− sin (EO − s) = y · Σ (12)

where the unit vectors Υ and y are the top and middle rows
of Mclass (i.e. they are the x and y axes of the equinox based
equatorial triad) and Σ is the top row of MΣ (i.e. the unit vector
directed to the point Σ in C06 Fig. 1):

Υ[1] = cosψ cos γ̄ + sinψ cos φ̄ sin γ̄

Υ[2] = cosψ sin γ̄ − sinψ cos φ̄ cos γ̄

Υ[3] = − sinψ sin φ̄ (13)

y[1] = cos ε sinψ cos γ̄

−(cos ε cosψ cos φ̄ + sin ε sin φ̄) sin γ̄

y[2] = cos ε sinψ sin γ̄

+(cos ε cosψ cos φ̄ + sin ε sin φ̄) cos γ̄

y[3] = cos ε cosψ sin φ̄ − sin ε cos φ̄ (14)

Σ[1] = 1 − X2/(1 + Z)

Σ[2] = −XY/(1 + Z)

Σ[3] = −X. (15)

Using Eqs. (12), and substituting the values of s and the vector
components (13)–(15), we obtain the angle EO by evaluating:

EO = s − tan−1 y · Σ
Υ · Σ · (16)

Greenwich sidereal time is simply:

GST = ERA − EO, (17)

while the EO can also be used to transform intermediate
(i.e. CIO based) right ascensions to classical apparent right
ascensions:

αeqx = αCIO − EO. (18)

3. Procedure based on CIP X,Y coordinates

For highly focused applications that have specific accuracy re-
quirements, practical issues take precedence, with adaptability to
different applications a less important consideration. The chosen
procedure must be straightforward, self-contained and difficult
to mis-apply.

In such cases, direct series for the CIP X, Y (cf. C06,
Sect. 3.1) and for computing the CIO locator s (cf. C06,
Sect. 4.1) are appropriate, and this is the method set out in IERS
Conventions (2003). The scheme is straightforward, with little
to go wrong as long as the series are correctly implemented. In
particular, there are no opportunities for applying matrix rota-
tions in the wrong order, always a danger when the frame bias,
precession and nutation are implemented as a chain of individual
rotations.

The procedure based on the X, Y series is optimized for the
case where transformation between celestial and terrestrial co-
ordinates is the goal. No ecliptic or equinox is needed, and the
Earth rotation angle is used directly. However, as we shall show
in Sect. 3.3, by introducing an ecliptic as an additional basis, it
is possible to generate all the equinox based products efficiently
and accurately, should this be required.

3.1. Computation of the basis quantities

As for the angles based procedure (Sect. 2.1), two elements of
the canonical basis exist as trigonometric series that are too large
to be reproduced here but are available electronically:

– The X, Y components of the IAU 2006 CIP unit vector; see
C06, Sect. 3.1. These series encapsulate the complete chain
of rotations, comprising frame bias, P03 precession and the
IAU 2000A nutation with P03 adjustments.

– The series for s + XY/2.

The first series is evaluated, giving X, Y; the quantity s can then
be obtained using the second series. Once ERA has been cal-
culated, using Eq. (3), everything needed to form the matri-
ces MCIO and R is at hand.

3.2. Computation of the MCIO and R matrices

Given X, Y, s and the ERA θ, the elements of (i) the CIO based
NPB matrix MCIO and (ii) the GCRS-to-TIRS matrix R can be
obtained from the expressions:

A[1, 1] = cos β + aX(Y sin β − X cos β)

A[1, 2] = − sin β + aY(Y sin β − X cos β)

A[1, 3] = −(X cos β − Y sin β)

A[2, 1] = sin β − aX(Y cos β + X sin β)

A[2, 2] = cos β − aY(Y cos β + X sin β)

A[2, 3] = −(Y cos β + X sin β)

A[3, 1] = X

A[3, 2] = Y

A[3, 3] = Z (19)

where Z = (1 − X2 − Y2)1/2 and a = 1/(1 + Z); for A ≡ MCIO,
β = s (cf. Eq. (9)); for A ≡ R, β = θ + s.

3.3. Computation of Mclass , EO and GST

Should equinox based products be required, these can
be obtained by introducing an ecliptic. The first two
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Table 2. Various formulations of the MCIO matrix elements corresponding to different accuracies over 2 centuries.

matrix element expressions

R(1,1) 1 − X2(1 + X2/4)/2 1 − X2/2 1 − X2/2 1 − X2/2 1
R(1,2) −s − XY(1 + X2/4)/2 −s − XY/2 −s − XY/2 0 0
R(1,3) −X + sY −X −X −X −X
R(2,1) s(1 − X2/2) − XY(1 + X2/4)/2 s − XY/2 s − XY/2 0 0
R(2,2) 1 − Y2/2 1 − Y2/2 1 − Y2/2 1 1
R(2,3) −Y − sX −Y − sX −Y −Y −Y
R(3,1) X X X X X
R(3,2) Y Y Y Y Y
R(3,3) 1 − (X2(1 + X2/4) + Y2)/2 1 − (X2 + Y2)/2 1 − (X2 + Y2)/2 1 − X2/2 1

accuracy over ± 2 cy better than 0.1 µas 165 µas 3.7 mas 0.38 arcsec 0.85 arcsec
≤ during 21st cy 0.001 µas 8 µas 0.4 mas 0.08 arcsec 0.12 arcsec

Fukushima-Williams angles (Eq. (4)) provide a convenient
method. The rotations R3(γ̄) followed by R1(φ̄) (cf. Eq. (7)) pro-
duce a matrix the z-axis of which is the GCRS unit vector for the
ecliptic pole of date, k:

k = [sin φ̄ sin γ̄, − sin φ̄ cos γ̄, cos φ̄] (20)

Writing n for the CIP vector (X, Y, Z), the equinox based NPB
matrix is:

Mclass = [〈n× k〉, n × 〈n× k〉, n] (21)

(cf. Murray 1983 Eq. (5.4.12) and C06 Eq. (22)). The EO and
GST can then be obtained using the methods of Sect. 2.3.

4. Approximate procedures

When transforming between celestial and terrestrial coordinates,
the accuracy requirements will depend on the application, and
in many cases a trade-off between accuracy, conciseness and
computing costs can be considered. The CIO based NPB ma-
trix MCIO is particularly well-suited to approximation as its ele-
ments are simple functions of the CIP coordinates X, Y and the
quantity s, the latter a very small angle in the present era. To
add to these advantages, the required Earth rotation measure is
ERA, a straightforward linear transformation of UT1. Various
approximate formulations of the matrix elements of MCIO and
their accuracy limitations are summarized in Table 2.

The comparisons in the table assume full-accuracy X, Y and
(where present at all) s. However, in cases where an approximate
formulation is advantageous it will also be usual to introduce
other simplifications, such as truncating the series. To take an
extreme example, if the simplest of the formulations is used:

MCIO �
⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 −X
0 1 −Y
X Y 1

⎞
⎟⎟⎟⎟⎟⎟⎠ (22)

and X, Y are computed as follows:

X = 2.6603× 10−7τ − 33.2 × 10−6 sinΩ

Y = −8.14 × 10−14τ2 + 44.6 × 10−6 cosΩ (23)

where τ is the number of days since J2000.0, and:

Ω = 2.182 − 9.242 × 10−4τ (radians), (24)

the maximum error in the 21st century is less than 0.′′9, still ad-
equate for many purposes such as predicting source visibility or
pointing a small telescope.

5. Summary

In this paper we have provided two full-accuracy procedures for
implementing the IAU 2006 precession. The two are of similar
efficiency, and each supports the use of equinox based as well as
CIO based applications. In addition, we have listed a selection of
simplified methods for applications where the highest accuracy
is not a requirement.

The appendix, below, contains a fully worked numerical ex-
ample, demonstrating both of the full-accuracy procedures and
the most basic of the simplified procedures.
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Appendix: Numerical example

Here we present a worked numerical example where the procedures described in Sects. 1–3 are used to generate (i) the CIO based
NPB matrix MCIO, (ii) the equinox based NPB matrix Mclass and (iii) the GCRS-to-TIRS matrix R, in several different ways. A
calculation precision of about of 33 decimal digits was used, and to facilitate comparisons the results in most cases are reported to
several more digits than the underlying models justify.

The date selected for the tests is:

UTC = 2006 January 15, 21h 24m .s375 (A.1)

corresponding to:

TT = 2400000.5+ 53750.892855138888889 (JD) (A.2)

t = +0.06040774415164651 Jcy (A.3)

Adopting for the purposes of this example the value:

UT1 − UTC = +0.s3341 (A.4)

we obtain:

UT1 = 2400000.5+ 53750.892104561342593 (JD) (A.5)

A.1. Reference method

The basis of the reference method is the matrix Mclass calculated as the product of the three individual rotation matrices B (bias)
followed by P (precession) and then N (nutation), using basic rather than derived quantities:

Mclass = N · P · B
= R1(−[εA + ∆ε]) · R3(−∆ψ) · R1(εA) · R3(χA) · R1(−ωA) · R3(−ψA) · R1(ε0 − η0) · R2(ξ0) · R3(dα0) (A.6)

The various angles are defined in C06, Sect. 2.2.1. The IAU 2000A frame bias angles are (Capitaine et al. 2003a):

dα0 = –0.′′014600000, ξ0 = –0.′′041775000 · sin(84381.′′448000000), η0 = –0.′′006819200 (A.7)

and the P03 J2000 obliquity is:

ε0 = 84381.′′406000000 (A.8)

The P03 precession angles are ψA, ωA, χA and εA, and the nutation components ∆ψ and ∆ε are the IAU 2000A values adjusted to
match the P03 precession. Using the P03 series (Capitaine et al. 2005, Tables 3 and 4) we can obtain the precession angles for the
test date:

ψA = +304.′′359364139, ωA = +84381.′′404629617, χA = +0.′′628998164, εA = +84378.′′576696215 (A.9)

Evaluating the IAU 2000A nutation series, using the SOFA subroutine iau_NUT00A, for the test date gives:

∆ψ2000A = –1.′′071332645, ∆ε2000A = +8.′′656842472 (A.10)

and we use Eq. (5) to obtain the corrections needed to match the IAU 2006 precession:

d∆ψ = –0.′′000000323, d∆ε = –0.′′000001452 (A.11)

The nutation components are therefore:

∆ψ = –1.′′071332969, ∆ε = +8.′′656841020 (A.12)

We now have everything needed to evaluate (A.6) and form the classical NPB matrix Mclass:

Mclass =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.99999892304984813 −0.00134606989019584 −0.00058480338117601
+0.00134604536886632 +0.99999909318492607 −0.00004232245847787
+0.00058485981985452 +0.00004153524101576 +0.99999982810689266

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.13)

The bottom row of this matrix is the CIP unit vector (X, Y, Z). We evaluate the series for s + XY/2 and subtract XY/2 to obtain the
quantity s. Then, by substituting X, Y, Z and s into Eqs. (9), we obtain the CIO based NPB matrix:

MCIO =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.99999982896948063 +0.00000000032319161 −0.00058485982037244
−0.00000002461548515 +0.99999999913741188 −0.00004153523372294
+0.00058485981985452 +0.00004153524101576 +0.99999982810689266

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.14)

All that remains is to use Eq. (3) to obtain:

ERA = 76.◦265431053522 ≡ 5h 05m .s03703452845 (A.15)

and with the first of Eqs. (2) to obtain the GCRS-to-TIRS matrix:

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.23742421473054043 +0.97140604802742436 −0.00017920749858993
−0.97140588849284692 +0.23742427873021975 +0.00055827489427310
+0.00058485981985452 +0.00004153524101576 +0.99999982810689266

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.16)
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A.2. Procedure based on bias-precession and nutation angles

Evaluating Eqs. (4) for the test date gives the following Fukushima-Williams angles:

γ̄ = +0.′′586558662, φ̄ = +84378.′′585257806, ψ̄ = +304.′′327212171, εA = +84378.′′576696215 (A.17)

The last of these is the same as (A.9), obtained earlier. Adding the nutations (Eq. (6)), we obtain:

ψ = +303.′′255879203, ε = +84387.′′233537235 (A.18)

If required, we can use these angles in Eq. (7) to obtain the whole of the equinox based NPB matrix:

Mclass =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.99999892304984688 −0.00134606989112466 −0.00058480338117619
+0.00134604536979454 +0.99999909318492478 −0.00004232245950000
+0.00058485981985612 +0.00004153524203735 +0.99999982810689262

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.19)

The total rotational difference with respect to (A.13) is 0.28 µas. This is consistent with the rounding precision used for the polyno-
mial coefficients of the respective parameterizations. In the normal case, where only the bottom row is wanted, Eqs. (8) can be used
to compute X and Y alone. Then, by evaluating the series for s + XY/2 and subtracting XY/2, we obtain the quantity s:

s = –0.′′002571986 (A.20)

Substituting X, Y, Z and s into Eqs. (9), we obtain the CIO based NPB matrix:

MCIO =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.99999982896948063 +0.00000000032319161 −0.00058485982037403
−0.00000002461548575 +0.99999999913741183 −0.00004153523474454
+0.00058485981985612 +0.00004153524203735 +0.99999982810689262

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.21)

With the first of Eqs. (2), we apply ERA to obtain the GCRS-to-TIRS matrix:

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.23742421473053985 +0.97140604802742432 −0.00017920749958268
−0.97140588849284706 +0.23742427873021974 +0.00055827489403210
+0.00058485981985612 +0.00004153524203735 +0.99999982810689262

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.22)

For this and the previous result, the agreement with (A.14) and (A.16) respectively is 0.23 µas. To obtain the equation of the origins,
we evaluate Eqs. ((13)−(15)) to produce the three vectors:

Υ = (+0.99999892304984688 −0.00134606989112466 −0.00058480338117619) (A.23)

y = (+0.00134604536979454 +0.99999909318492478 −0.00004232245950000) (A.24)

Σ = (+0.99999982896948086 −0.00000001214614813 −0.00058485981985612) (A.25)

and then use Eq. (16), which gives:

EO = –277.′′646996035 (A.26)

Combining EO and ERA with Eq. (17) gives us Greenwich (apparent) sidereal time:

GST = 05h 05m .s22213252581 (A.27)

and with the third of Eqs. (2) we can form the GCRS-to-TIRS matrix R using GST instead of ERA. The results are identical
to (A.22).

A.3. Procedure based on CIP X,Y coordinates

The procedures given in Sect. 3 start with the direct evaluation of the CIP coordinates X, Y from series. Evaluating the series for the
test date using the fundamental arguments given in IERS Conventions (2003), we obtain:

X = +120.′′635997299064, Y = +8.′′567258740044 (A.28)

Converting into radians, we obtain the CIP vector components:

X = +0.000584859819249, Y = +0.000041535242468 (A.29)

These agree with the reference values from (A.1) to 0.12 µas in X and 0.30 µas in Y. The corresponding Z value is:

Z = +0.999999828106893 (A.30)

Evaluating the series for s + XY/2 and subtracting XY/2 we obtain:

s = −0.′′002571986 (A.31)
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Substituting X, Y, Z and s into Eqs. (9), we obtain the CIO based NPB matrix:

MCIO =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.99999982896948099 +0.00000000032319161 −0.00058485981976671
−0.00000002461548598 +0.99999999913741182 −0.00004153523517497
+0.00058485981924879 +0.00004153524246778 +0.99999982810689296

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.32)

and with the first of Eqs. (2) we can form the GCRS-to-TIRS matrix:

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.23742421473053972 +0.97140604802742430 −0.00017920749985661
−0.97140588849284746 +0.23742427873021973 +0.00055827489333995
+0.00058485981924879 +0.00004153524246778 +0.99999982810689296

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.33)

The agreement with (A.16) is 0.32 µas. Should we wish to generate the equinox based products, we would take the first two
Fukushima-Williams angles, γ̄ and φ̄ (see (A.17), above), and use Eq. (20) to obtain the ecliptic pole GCRS vector:

k = (+0.00000113112930755 −0.39776442218982286 +0.91748758271636401) (A.34)

This and the CIP vector (X, Y, Z) give us, via Eq. (21), the equinox based NPB matrix:

Mclass =

⎛
⎜⎜⎜⎜⎜⎜⎝

+0.99999892304984912 −0.00134606988972260 −0.00058480338056834
+0.00134604536839225 +0.99999909318492665 −0.00004232245992880
+0.00058485981924879 +0.00004153524246778 +0.99999982810689296

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.35)

The rotational disagreement with respect to the reference version is 0.34 µas. The slight increase relative to the (A.33) result is due
to the propagation of the CIP disagreement into the position of the equinox. Using Eqs. ((13)–(17)), we obtain the equation of the
equinoxes and the Greenwich sidereal time:

EO = −277.′′646995746, GST = 05h 05m .s22213252562 (A.36)

These differ from the values obtained in (A.26) and (A.27) by 0.29 µas. With the third of Eqs. (2) we can form the GCRS-to-TIRS
matrix R using GST instead of ERA. The results are identical to (A.33).

A.4. Approximate procedure

Using Eqs. (22)–(24), for our test date we obtain τ = +2206.392855139 days, Ω = 4.◦092400420, X = +0.000582240,
Y = +0.000043749 and hence a crude approximation to the GCRS to CIRS matrix (cf. (A.32)):

MCIO �
⎛
⎜⎜⎜⎜⎜⎜⎝

+1.00000000000000000 +0.00000000000000000 −0.00058224012792061
+0.00000000000000000 +1.00000000000000000 −0.00004374943683668
+0.00058224012792061 +0.00004374943683668 +1.00000000000000000

⎞
⎟⎟⎟⎟⎟⎟⎠ (A.37)

The rotational error is 0.7 arcsec.


