

Post-IAU-2000 Nomenclature for the Telescope Pointing Application

Patrick Wallace ptw@star.rl.ac..uk

Observatoire de Paris

Topics

Application

Customers

Nomenclature

Old versus new

Observatoire de Paris

Telescope pointing

"Pointing" has several aspects:

- Acquisition of celestial targets.
- Tracking.
- Blind offset guiding.
- Related topics:
 - World coordinate systems (pixel i, $j \leftrightarrow sky \alpha, \delta$)
 - FITS image interchange format.
 - Interferometers.
- A good "test case" for the new nomenclature:
 - Accuracy requirements not too demanding.
 - Must be comprehensible to non-FA users.

The application

Comparatively modest accuracy requirements:

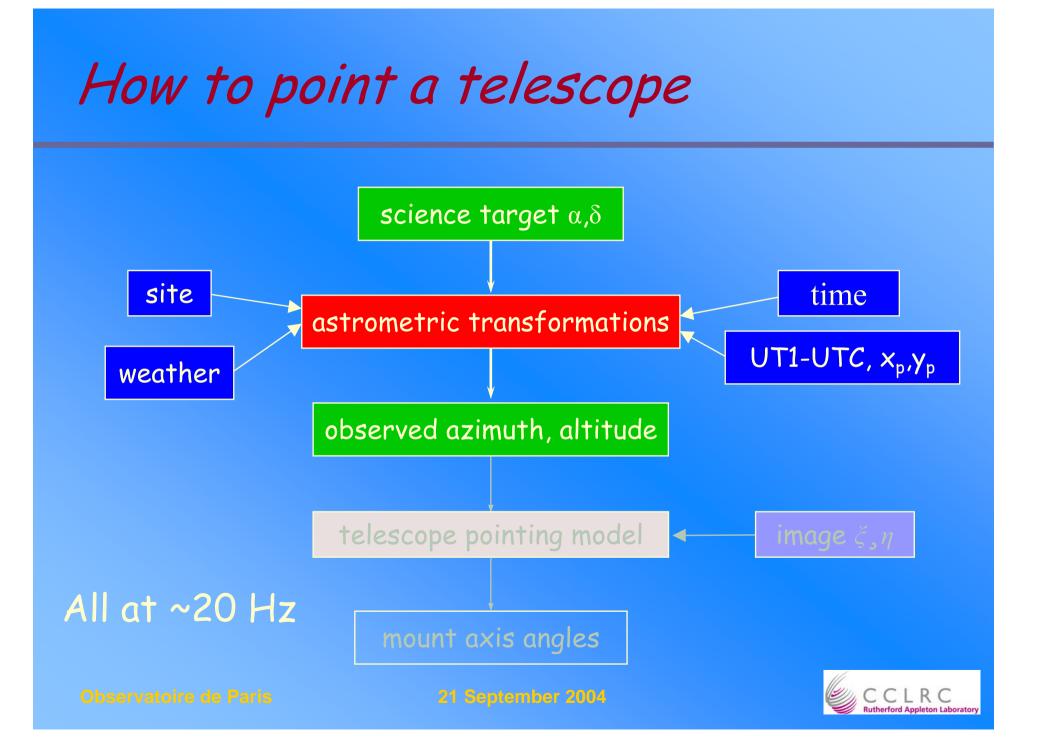
- 0.5 arcsec absolute at best
- 0.001 arcsec "noise level" acceptable

Fixed models preferred:

- polar motion is usually (but not always) neglected
- no need for IERS corrections to nutation
- ...but UT1-UTC is required except for some equatorials

Has to be understood by:

- Telescope users (astrophysicists)
- Engineers and programmers



Target audience

- Telescope users: interested only in "J2000 α , δ " and a rough idea of the zenith distance (~ air mass).
- Engineers and software staff: need to understand everything between ICRS α,δ and telescope axis encoder readings.
- Both of the above groups
 - i. will have encountered only equinox/ST methods,
 - ii. will typically have only a rudimentary grasp of the general principles, and
 - iii. will see no need for change.

Observatoire de Paris

Computing considerations

- Modern CPUs are so fast that the entire pointing calculation could be done at the full 20 Hz rate (or whatever).
- But it is still usual to re-compute precession and nutation only occasionally - e.g. for each new target.
- In general, star-independent quantities can be refreshed infrequently: Earth ephemeris, precession, refraction etc.
- Only Earth rotation is time-critical.
- All of this means that various sorts of interim coordinates are present in the software and must be clearly labelled.

Astrometric transformations

CATALOGUE [a. δ] proper motion, catalogue epoch to J2000 INTERNATIONAL CELESTIAL REFERENCE SYSTEM $[\alpha, \delta]$, epoch J2000 proper motion, J2000 to date (barycentric) ICRS $[a, \delta]$ of date annual parallax ASTROMETRIC $[a, \delta]$ light deflection annual aberration GEOCENTRIC ICRS [a. d] frame bias precession nutation CELESTIAL INTERMEDIATE REFERENCE SYSTEM $[\alpha, \delta]$ Earth rotation TERRESTRIAL INTERMEDIATE REFERENCE SYSTEM $[\Lambda, \phi]$ polar motion ITRS / GREENWICH [h.δ] site longitude diurnal aberration and parallax TOPOCENTRIC [h. J] h, δ to az, alt TOPOCENTRIC [az,alt] refraction OBSERVED [az,alt]

Observatoire de Paris

Unresolved

ICRS / BCRS / GCRS?

- Out-of-date and confusing text-book definitions of "astrometric place".
- Weakness of "intermediate".
- Should we separate light direction from triad?

Was the old system any better?

Mean place? True place? Apparent place? Local place? Virtual place? Epochs and equinoxes? Equation of the equinoxes? Uniform equinox?

How to sell the new system

Start with ERA, not the CIO:

- ERA(UT) formula is conspicuously simpler than GST(UT).
- No equation of the equinoxes to omit or get wrong.
- Point out that if you set your sidereal clock to ERA and use a_{CIRS} instead of a_{apparent}, it's business as usual.
- Don't give undue prominence to the kinematical definition of the CLO. The ICRS R.A. of the CLO is close enough to zero for introductory purposes (< 0.01 arcsec for the next 50 years).
- For rough-and-ready mental arithmetic, h ≈ LERA-a_{ICRS} works better than h ≈ LST-a_{ICRS}, which is what people do at present.

