Post-IAU-2000 Nomenclature for the Telescope Pointing Application

Patrick Wallace
ptw@star.rl.ac.uk
Topics

- Application
- Customers
- Nomenclature
- Old versus new
Telescope pointing

- “Pointing” has several aspects:
 - Acquisition of celestial targets.
 - Tracking.
 - Blind offset guiding.

- Related topics:
 - World coordinate systems (pixel $i,j \leftrightarrow$ sky α,δ)
 - FITS image interchange format.
 - Interferometers.

- A good “test case” for the new nomenclature:
 - Accuracy requirements not too demanding.
 - Must be comprehensible to non-FA users.
The application

- Comparatively modest accuracy requirements:
 - 0.5 arcsec absolute at best
 - 0.001 arcsec “noise level” acceptable
- Fixed models preferred:
 - polar motion is usually (but not always) neglected
 - no need for IERS corrections to nutation
 - ...but UT1-UTC is required except for some equatorials
- Has to be understood by:
 - Telescope users (astrophysicists)
 - Engineers and programmers
Target audience

- **Telescope users:** interested only in “J2000 α,δ” and a rough idea of the zenith distance (~ air mass).

- **Engineers and software staff:** need to understand everything between ICRS α,δ and telescope axis encoder readings.

- **Both of the above groups**
 i. will have encountered only equinox/ST methods,
 ii. will typically have only a rudimentary grasp of the general principles, and
 iii. will see no need for change.
How to point a telescope

All at ~20 Hz
Computing considerations

- Modern CPUs are so fast that the entire pointing calculation could be done at the full 20 Hz rate (or whatever).
- But it is still usual to re-compute precession and nutation only occasionally - e.g. for each new target.
- In general, star-independent quantities can be refreshed infrequently: Earth ephemeris, precession, refraction etc.
- Only Earth rotation is time-critical.

- All of this means that various sorts of interim coordinates are present in the software and must be clearly labelled.
Astrometric transformations

CATALOGUE $[\alpha, \delta]$
proper motion, catalogue epoch to J2000

INTERNATIONAL CELESTIAL REFERENCE SYSTEM $[\alpha, \delta]$, epoch J2000
proper motion, J2000 to date

(barycentric) ICRS $[\alpha, \delta]$ of date
annual parallax

ASTROMETRIC $[\alpha, \delta]$
ligh deflection
annual aberration

GEOCENTRIC ICRS $[\alpha, \delta]$
frame bias
precession
nutation

CELESTIAL INTERMEDIATE REFERENCE SYSTEM $[\alpha, \delta]$
Earth rotation

TERRESTRIAL INTERMEDIATE REFERENCE SYSTEM $[\lambda, \varphi]$
polar motion

ITRS / GREENWICH $[h, \delta]$
site longitude
diurnal aberration and parallax

TOPOCENTRIC $[h, \delta]$
h, δ to az, alt

TOPOCENTRIC $[\text{az}, \text{alt}]$
refraction

OBSERVED $[\text{az}, \text{alt}]$
Unresolved

- ICRS / BCRS / GCRS?
- Out-of-date and confusing text-book definitions of “astrometric place”.
- Weakness of “intermediate”.
- Should we separate light direction from triad?
Was the old system any better?

- Mean place?
- True place?
- Apparent place?
- Local place?
- Virtual place?
- Epochs and equinoxes?
- Equation of the equinoxes?
- Uniform equinox?
How to sell the new system

- Start with ERA, not the CIO:
 - ERA(UT) formula is conspicuously simpler than GST(UT).
 - No equation of the equinoxes to omit or get wrong.
- Point out that if you set your sidereal clock to ERA and use α_{CIRS} instead of α_{apparent}, it’s business as usual.
- Don’t give undue prominence to the kinematical definition of the CIO. The ICRS R.A. of the CIO is close enough to zero for introductory purposes (< 0.01 arcsec for the next 50 years).
- For rough-and-ready mental arithmetic, $h \approx \text{LERA}-\alpha_{\text{ICRS}}$ works better than $h \approx \text{LST}-\alpha_{\text{ICRS}}$, which is what people do at present.