The solar quadrupole moment from planetary ephemerides: present state of the art

S. Pireaux
UMR 6162 ARTEMIS, Obs. de la Côte d’Azur,
Av. de Copernic, 06130 Grasse, France
sophie.pireaux@obs-azur.fr

E.M. Standish (JPL, NASA, USA),
E. Pitjeva (IAA RAS, Russia),
J-P. Rozelot (GEMINI, Observatoire de la Côte d’Azur, France)

IAU JD 16: Nomenclature, precession and new models in fundamental astronomy

IAU GA, Prague, 22nd August 2006
Structure of this speech

Part I. Definition of J_n

Part II. Present estimates of J_2
 a. Different methods…
 b. Possible variation with the solar cycle

Part III. Relevance of J_n
 a. In solar astrophysics
 b. In other fields

Part IV. J_2 from planetary ephemerides?
 a. Aim: dynamical constraints on solar J_2
 b. Method
 c. Planetary ephemeris tests carried
 d. Preliminary results

(Part V. Future space missions
 a. In solar astrophysics
 b. In fundamental physics (dedicated or not))
Part I. Definition of J_n

- Outer solar gravitational potential at distance r ($r > R_{\odot}$):

$$\phi_{grav} = -\frac{GM}{r} \left[1 - \sum \left(\frac{R_{\odot}}{r} \right)^{2n} J_{2n} \ P_{2n} (\cos \theta) \right]$$

Gravitational moments ($J_2 \sim 10^{-7}$)

- J_n and solar shape are related:

 solar surface = equipotential wrt total potential (gravitational, rotational…)

Distorted shape analogy:

Earth = geoid **Sun** = helioid
Part II. Present estimates of J_2

Ila. Methods yield estimates

- Stellar structure equations + Differential rotation model

ex: [Godier, Rozelot, 1999] $\sim 1.6 \times 10^{-7}$

- Theory of the Solar Figure

ex: [Rozelot, Lefebvre, 2003] $\sim 6.5 \times 10^{-7}$

- Helioseismology

ex: [Pijpers, 1998] $\sim 2.2 \times 10^{-7}$

Ilb. Possible variation of J_2 with the solar cycle

... related to solar shape variations
Part III. Relevance of J_2

Illa. In solar astrophys.: reflects the physics of solar models

- Influence of solar core properties on J_n, \odot shape and $\vec{J_\odot}$?

- Influence of latitudinal or differential rotation on J_n and \odot shape?

- Precise determination of the J_n and \odot shape, still poorly known?

- Are the \odot shape and J_n time dependant?

- Constraining solar - models (differential rotation, density inhomogeneities) - evolution?
IIIb. In other fields:

A/ Dynamical conseq. of J_2: relativistic astrometry

![Diagram of space-time curved by the solar body with light deflection measured by angle $\hat{\alpha}$]

Relativistic light deflection

\[\hat{\alpha}_{\text{grazing}} = +2(1 + \gamma) \frac{GM}{R_\odot c^2} \]

need precise knowledge of $(J_2, \overrightarrow{J_\odot})$ for precise astrometry in solar neighborhood:

\[+ 2(1 + \gamma)J_2 \frac{GM}{R_\odot c^2} \]

~1.75 arcsec

\[\pm 2(1 + \gamma)\left| \frac{G\overrightarrow{J_\odot}}{R_\odot^2 c^3} \right| \]

~0.4-0.3 μarcsec

~0.7 μarcsec

Post-Newtonian parameter encoding the amount of curvature of space-time per unit rest mass

\[\Theta\left(\frac{1}{c^4} \right) \]

[Pireaux, 2002]
B/ Dynamical conseq. of J_2: relativistic celestial meca.

- **Indirect influences of J_2:**

Through solar system bodies spin-orbit couplings, J_2 and $\overrightarrow{J_\odot}$ will influence the motion (a, e, i) of solar system bodies.

\[J_2 \odot \rightarrow \Phi \rightarrow \zeta \]

dynamical constraints on $J_2 \odot$ and $\overrightarrow{J_\odot}$

ex: by lunar librations: $J_2 \odot \leq 3 \cdot 10^{-6}$

[Rozelot, Rösch, 1997]
[Bois, Girard, 1999]
A direct influence of \(J_2 \):

Purely relativistic contribution (PPN) → \(J_2 \) in planetary perihelion advances

\[
\Delta \omega = \Delta \omega_{0,\text{GR}} \bullet \left[\frac{1}{3} \left(2 + 2 \gamma - \beta \right) + \frac{R_{\odot}^2}{R a (1-e^2)} J_{2,\odot} \left(3 \sin^2 i - 1 \right) \right]
\]

42,98 arcsec/century for \(\odot \)

Post-Newtonian parameter encoding the amount of non-linearity in the superposition law of gravitation

<table>
<thead>
<tr>
<th>Mercury perihelion advance (arcsec/century)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPN</td>
</tr>
<tr>
<td>(J_{2,\odot})</td>
</tr>
<tr>
<td>~ 43</td>
</tr>
<tr>
<td>Equinoxes</td>
</tr>
<tr>
<td>~ 5000</td>
</tr>
<tr>
<td>planets:</td>
</tr>
<tr>
<td>Venus (\sim 280)</td>
</tr>
<tr>
<td>Jupiter (\sim 150)</td>
</tr>
<tr>
<td>Others (\sim 100)</td>
</tr>
</tbody>
</table>
Precise J_2 will be needed for precise ephemeris.

Presently, strong correlation (J_2, β) or (J_2, γ) in planetary ephemerides [to be detailed]

- Other direct influences of J_2:
 - planetary spin
 - variation of the ecliptic plane

Precise J_2 needed for long-term solar system models [Laskar, 1999, 2004]

C/ Testing alternative theories of gravitation

J_2, β, γ, G in PPN formalism and in IAU2000 BCRS standard metric
Part IV. J_2 from planetary ephemerides

IVa. Aim: dynamical constraints on solar J_2

\[J_2, \gamma - 1, \beta - 1, \frac{\dot{G}}{G} = ? \]

IVb. Method:

- **Simultaneous** least square fit of parameters (planetary, J_2, PPN) in a planetary motion model to observations of planets
- Planetary ephemerides considered:
 - JPL (E.M. Standish, NASA, USA): DE413, DE415
 - EPM (E. Pitjeva, IAARAS, Russia): EPM2003, EPM2004
 - joint JPL-EPM 2006 solution
IVc. Planetary ephemeris tests carried

A/ Observational data sets available (inner planets)

[PIreaux, Standish, Pitjeva, Rozelot, Celest. Mec. in prepa]

B/ Different tests... for a given epoch (JD2440400.5) and ± epochs

Testing relevance of data sets?

Tests #1 → 8 : GR assumed (\(\tilde{G}/G = \beta - 1 = \gamma - 1 = 0 \))

with #0 = base solution = all data sets → \(J_2 \) estimate in the setting of

\(\text{GR} = J_2^{GR} \)

\((J_2, \beta, \gamma, G)\) parameters correlation?

Tests #9 → 12 : all data sets, GR relaxed

with #10: \(\tilde{G}/G, \beta, \gamma \) relaxed → \(J_2 \) estimate in the setting of

fully conservative theories

\(= J_2^{\text{fully-cons.}} \)

Discriminate between \(J_2 \) prior assumptions?

Tests #13 → 20 : all data sets, assumption on \(J_2 = 2.0 \times 10^{-7} \) or \(6.5 \times 10^{-7} \)

[Rozelot, Lefebvre, 2003] Theory of Solar Figure

[Lydon, Sofia, 1996] Solar oblateness measurements
IVd. PRELIMINARY results

Testing relevance of data sets?
- Mars data is crucial (largest data sets, more precise)
- Mercury data is important (strongest relativistic perihelion advance)
- Among Mars data, ranging is the most important (precise, numerous)
- Post-1985 Marsian data is important (more precise)

Testing \((J_2, \beta, \gamma G)\) parameters correlation?
- For fully-cons. theories of gravitation: strong \((J_2, \beta), (J_2, \gamma)\) correlations !!
 ➡️ improved significantly with the recent ephemerides used here
 ➡️ might improve in the future:
 - more data
 - space missions to decorrelate \(\beta-J_2\) (GAIA, Bepi Colombo…)
- High sensitivity of fully conservative solution to any perturbation
 ⬅️ least-square minimum = very flat surface
 ⬅️ \(\beta-1, \gamma-1\) are very small (solar system tests), \(J_2 \sim 10^{-7}\)
- \(\beta\) and \(\gamma\) estimates from ephemerides agree with those of solar system tests

Testing \(J_2\) assumptions?
- constraining \(J_2\)-value tends to distort other parameter values
All tests:

- $\sigma = 1$ formal errors, are too optimistic (by a factor 10 or more).

- For fully-cons. theories of gravitation: β, γ estimates sensitive to data-set weight.

- J_2-values close to helioseismic estimates are favored by ephemeris tests

 \(\leftrightarrow J_2 \text{Theory of Solar Figure} \)

- J_2^{GR} central value estimate $< J_2^{fully-cons.}$ central value estimate

- Should not (yet?) trust exact central-value estimate of J_2 from ephemerides:
 - epoch dependency problem to be solved
 - sensitivity to data weight
 - … but order of magnitude (10^{-7}) is NOW correct.

- Comparisons between JPL and EPM planetary ephemerides
 - improved both ephemerides
 - some errors were found and corrected
 - converging towards an estimate of J_2 in the setting of GR
Other transparencies...
Part IV. Future space missions

1. In solar astrophysics

- Better knowledge of solar diameter, rotation, core dynamics: space missions
- Solar cycle dependency
2. In fundamental physics (dedicated or not)

A/ Adopted missions

- **Stronger constraints on PPN:**
 \(~10^{-7} \text{ (GAIA)} \) or \(~10^{-7} \text{ (BeppiC)}\) on \(\gamma\) from light deflection
 \(~(2-9) \times 10^{-4} \text{ (GAIA)} \) or \(~2 \times 10^{-6} \text{ (BeppiC)}\) on \(\beta\) from \(\Delta\omega\).

- **Possible decorrelation \(J_2\) in \(\Delta\omega\):**
 \(~10^{-8}\) on \(J_2\) from \((a,e,i)\)-dependancy of \(J_2\)-term in \(\Delta\omega_{\text{minor planets}}\)

- **Possible measurement of the precession of the orbital plane around the polar axis of the Sun:** \(J_2\)-effect only,
 \(~2 \times 10^{-9}\) on \(J_2\)

 - Improved planetary ephemerides (topo) and \(\Delta\omega\)

B/ Proposed missions

- **ASTROD**
 \(~10^{-9}\) on \(\gamma\) from light deflection, \(~10^{-7}\) on \(\beta\), \(~1 \times 10^{-8}-5 \times 10^{-9}\) on \(J_2\)

- **LATOR**
 \(~10^{-7}\) on \(\gamma\) from light deflection, \(~10^{-4}\) on \(\beta\), \(~10^{-7}\) on \(J_2\)
References

Lask, http://hal.ccsd.cnrs.fr/ccsd-00001603
Pitjeva, Astron. Letter, 31, 5, 340-349, 2005
Standish, private communication 2004