A gravitational redshift test using eccentric Galileo satellites
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|
Einstein Equivalence Principle (EEP)

General Relativity is based on 2 fundamental principles:
e the Einstein Equivalence Principle (EEP)

o the Einstein field equations
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|
Einstein Equivalence Principle (EEP)

General Relativity is based on 2 fundamental principles:
e the Einstein Equivalence Principle (EEP)
o the Einstein field equations

Following Will (1993), EEP can be divided into three sub-principles

© WEP/UFF: If any uncharged test body is placed at an initial event in
space-time and given an initial velocity there, then its subsequent trajectory
will be independent of its internal structure and composition.

@ LPIl: The outcome of any local non-gravitational test experiment is
independent of where and when in the universe it is performed.

@ LLI: The outcome of any local non-gravitational test experiment is
independent of the velocity of the (freely falling) apparatus.
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N
Tests of the EEP with atomic clocks

@ Tests of Lorentz Invariance using comparisons of

e atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit
1997)
e optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)
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@ Test of LPI searching for variations in the constants of Nature
e linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al.
2013; Godun et al. 2014; Huntemann et al. 2014)
e harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016)
e spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007;
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Tests of the EEP with atomic clocks

@ Tests of Lorentz Invariance using comparisons of
e atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit
1997)
e optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)

@ Test of Lorentz Invariance in the Matter Sector (Wolf, Chapelet, et al. 2006;
Hohensee et al. 2011; Pihan-Le Bars et al. 2017; Sanner et al. 2019)
@ Test of LPI searching for variations in the constants of Nature
e linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al.
2013; Godun et al. 2014; Huntemann et al. 2014)
e harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016)
e spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007;
Guéna et al. 2012; Leefer et al. 2013; Peil et al. 2013)
o Transients (Derevianko and Pospelov 2014; Wecisto, Morzyriski, et al. 2016;
Roberts et al. 2017; Wcisto, Ablewski, et al. 2018)

@ Test of LPI with a clock redshift experiment (Vessot 1989)
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Tests of Local Position Invariance: GP-A
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Gravity Probe A (GP-A) (1976)
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Test of LPI with a clock redshift test (Vessot and
Levine 1979; Vessot, Levine, et al. 1980; Vessot 1989)

Continuous two-way microwave link between a
spaceborne hydrogen maser clock and ground
hydrogen masers

One parabola of the rocket < 2 hours of data
Frequency shift verified to 7 x 107°
Gravitational redshift verified to 1.4 x 10~*
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Tests of Local Position Invariance: Galileo
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-
The Galileo system

@ European Global Navigation
Satellite System (GNSS)
(22.2 x 10° euros in 20 years)
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-
The Galileo system

P. DELVA (SYRTE/Obs.Paris)

European Global Navigation
Satellite System (GNSS)
(22.2 x 10° euros in 20 years)

24 satellites + 6 spares in
medium Earth orbit on three
orbital planes;

A global network of sensor
stations receiving information
from the Galileo satellites;

The control centres computing
information and synchronising
the time signal of the satellites;
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-
The story of Galileo satellites 201 & 202

o Galileo satellites 201 & 202 were launched with a Soyuz rocket on 22
august 2014 on the wrong orbit
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-
The story of Galileo satellites 201 & 202

o Galileo satellites 201 & 202 were launched with a Soyuz rocket on 22
august 2014 on the wrong orbit

@ Launch failure was due to a temporary interruption of the propellant
supply to the thrusters, resulting on a wrong orientation of the
satellites during the last stage of orbit injection
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Galileo satellites 201&202 orbit

————  In-Orbit Validatien Galileo satellites (8)
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Galileo sats
201&:202 launched
in 08/22/2014 on
the wrong orbit
due to a technical
problem =
GRedshift test
(GREAT Study)
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-
Why Galileo 201 & 202 are perfect candidates?

@ An elliptic orbit induces a periodic modulation of the clock proper
time at orbital frequency
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Why Galileo 201 & 202 are perfect candidates?

@ An elliptic orbit induces a periodic modulation of the clock proper
time at orbital frequency
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Data analysis flowchart

Satellite Orbit solution

Clock Bias solution

SLR residuals
+ clock on-ground characterization

Coordinate to proper
time transformation

Pre-processing

l

Theoretical clock bias

Corrected clock bias
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Evaluation of
systematics

|

Systematics
Error Budget

Test of gravitational redshift
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@ Orbit and clock solutions: ESA/ESOC
@ Transformation of orbits into GCRS with SOFA routines
@ Theoretical relativistic shift and LPI violation
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Choice of clock

GAL-201

*  PHM-B (std = 0.16 ns)
*  PHM-A (std = 0.69 ns)

Time Residuals (ns)

-4
Jan 2015 Jul2015 Jan2016 Jul2016 Jan2017 Jul2017 Jan 2018

Time Residuals (ns)

GAL-202

]

. PHM (std = 0.14 ns)
. RAFS (std = 2.21 ns)

-10
Jan 2015

Jan 2016

Jan 2017 Jan 2018

e GAL-201: only PHM-B (PHM-A is removed) — 359 days of data
e GAL-202: only PHM (RAFS is removed) — 649 days of data
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Random and systematic errors

© Uncertainties of the fitted parameters are estimated with Monte-Carlo
method (noise is dominated by random walk)
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Random and systematic errors

© Uncertainties of the fitted parameters are estimated with Monte-Carlo
method (noise is dominated by random walk)

@ Systematic effects acting directly on the frequency of the space clock:
temperature and magnetic field variations on board the Galileo
satellites

e Environmental sensitivity of the PHMs has been characterized on the
ground (see e.g. Rochat et al. 2012)
o We assume nominal sensitivity (upper limit)

@ Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure)

are strongly correlated to the clock solution

e 1 year SLR Campaign thanks to International Laser Ranging Service
e SLR residuals give the range error = clock error in a 1-way time
transfer

We model systematic effects and fit for each the corresponding LPI
violation parameters — conservative approach
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Galileo final result

LPI violat | Tot unc || Stat unc | Orbit unc | Temp unc | MF unc

[x107°] | [x107°] || [x107°] | [x107°] [x107%] | [x1079]
GAL-201 —-0.77 2.73 1.48 1.09 0.59 1.93
GAL-202 6.75 5.62 1.41 5.09 0.13 1.92
Combined ‘ 0.19 ‘ 2.48 H 1.32 ‘ 0.70 ‘ 0.55 ‘ 1.91 ‘

@ Local Position Invariance is confirmed down to 2.5 x 107>
uncertainty, more than 5 times improvements with respect to Gravity
Probe A measurement
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LPI violat | Tot unc || Stat unc | Orbit unc | Temp unc | MF unc
[x107°] | [x107°] || [x107°] | [x107°] [x107%] | [x1079]

GAL-201 —-0.77 2.73 1.48 1.09 0.59 1.93
GAL-202 6.75 5.62 1.41 5.09 0.13 1.92
Combined ‘ 0.19 ‘ 2.48 H 1.32 ‘ 0.70 ‘ 0.55 ‘ 1.91 ‘

@ Local Position Invariance is confirmed down to 2.5 x 107>
uncertainty, more than 5 times improvements with respect to Gravity
Probe A measurement

@ The test is now limited by the clock magnetic field sensitivity (along
the z axis), which effect is highly correlated to the LPI violation

@ PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al.,
PRL 121.23 (2018)
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@ Local Position Invariance is confirmed down to 2.5 x 107>
uncertainty, more than 5 times improvements with respect to Gravity
Probe A measurement

@ The test is now limited by the clock magnetic field sensitivity (along
the z axis), which effect is highly correlated to the LPI violation

@ PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al.,
PRL 121.23 (2018)

@ Nice outreach video by Derek Muller on Veritasium (youtube channel)
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