#### A gravitational redshift test using eccentric Galileo satellites

P. Delva<sup>1</sup>,\* N. Puchades<sup>2,1</sup>, E. Schönemann<sup>3</sup>, F. Dilssner<sup>3</sup>, C. Courde<sup>4</sup>, S. Bertone<sup>5</sup>, F. Gonzalez<sup>6</sup>, A. Hees<sup>1</sup>, Ch. Le Poncin-Lafitte<sup>1</sup>, F. Meynadier<sup>1</sup>, R. Prieto-Cerdeira<sup>6</sup>, B. Sohet<sup>1</sup>, J. Ventura-Traveset<sup>7</sup>, and P. Wolf<sup>1</sup> <sup>1</sup>SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, LNE, 61 avenue de l'Observatoire 75014 Paris France <sup>2</sup>Departamento de Astronomia y Astrofisica - Valencia University <sup>3</sup>European Space Operations Center, ESA/ESOC, Darmstadt Germany
<sup>4</sup>UMR Geoazur, Université de Nice, Observatoire de la Côte d'Azur, 250 rue A. Einstein, F-06560 Valbonne, France <sup>5</sup>Astronomical Institute, University of Bern, Sidlerstrases 5 CH-3012 Bern, Switzerland <sup>6</sup>European Space and Technology Centre, ESA/ESTEC, Noordwijk, The Netherlands and <sup>7</sup>European Space and Astronomy Center, ESA/ESAC, Villanueva de la Cañada, Spain

#### Journées 2019 – Astrometry, Earth Rotation and Reference Systems Paris, France, October 07–09, 2019



### Einstein Equivalence Principle (EEP)

General Relativity is based on 2 fundamental principles:

- the Einstein Equivalence Principle (EEP)
- the Einstein field equations

Following Will (1993), EEP can be divided into three sub-principles

- WEP/UFF: If any uncharged test body is placed at an initial event in space-time and given an initial velocity there, then its subsequent trajectory will be independent of its internal structure and composition.
- LPI: The outcome of any local non-gravitational test experiment is independent of where and when in the universe it is performed.
- LLI: The outcome of any local non-gravitational test experiment is independent of the velocity of the (freely falling) apparatus.

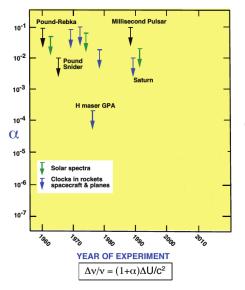
### Einstein Equivalence Principle (EEP)

General Relativity is based on 2 fundamental principles:

- the Einstein Equivalence Principle (EEP)
- the Einstein field equations

Following Will (1993), EEP can be divided into three sub-principles

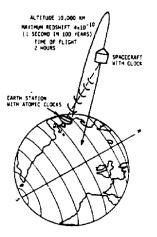
- WEP/UFF: If any uncharged test body is placed at an initial event in space-time and given an initial velocity there, then its subsequent trajectory will be independent of its internal structure and composition.
- LPI: The outcome of any local non-gravitational test experiment is independent of where and when in the universe it is performed.
- LLI: The outcome of any local non-gravitational test experiment is independent of the velocity of the (freely falling) apparatus.


- Tests of Lorentz Invariance using comparisons of
  - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit 1997)
  - optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)
- Test of Lorentz Invariance in the Matter Sector (Wolf, Chapelet, et al. 2006; Hohensee et al. 2011; Pihan-Le Bars et al. 2017; Sanner et al. 2019)

- Tests of Lorentz Invariance using comparisons of
  - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit 1997)
  - optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)
- Test of Lorentz Invariance in the Matter Sector (Wolf, Chapelet, et al. 2006; Hohensee et al. 2011; Pihan-Le Bars et al. 2017; Sanner et al. 2019)
- Test of LPI searching for variations in the constants of Nature
  - linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al. 2013; Godun et al. 2014; Huntemann et al. 2014)
  - harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016)
  - spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007; Guéna et al. 2012; Leefer et al. 2013; Peil et al. 2013)
  - Transients (Derevianko and Pospelov 2014; Wcisło, Morzyński, et al. 2016; Roberts et al. 2017; Wcisło, Ablewski, et al. 2018)

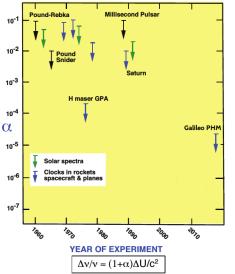
- Tests of Lorentz Invariance using comparisons of
  - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit 1997)
  - optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)
- Test of Lorentz Invariance in the Matter Sector (Wolf, Chapelet, et al. 2006; Hohensee et al. 2011; Pihan-Le Bars et al. 2017; Sanner et al. 2019)
- Test of LPI searching for variations in the constants of Nature
  - linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al. 2013; Godun et al. 2014; Huntemann et al. 2014)
  - harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016)
  - spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007; Guéna et al. 2012; Leefer et al. 2013; Peil et al. 2013)
  - Transients (Derevianko and Pospelov 2014; Wcisło, Morzyński, et al. 2016; Roberts et al. 2017; Wcisło, Ablewski, et al. 2018)
- Test of LPI with a clock redshift experiment (Vessot 1989)

- Tests of Lorentz Invariance using comparisons of
  - atomic clocks onboard GPS satellites w.r.t. ground clocks (Wolf and Petit 1997)
  - optical clocks linked with optical fibres (Delva, Lodewyck, et al. 2017)
- Test of Lorentz Invariance in the Matter Sector (Wolf, Chapelet, et al. 2006; Hohensee et al. 2011; Pihan-Le Bars et al. 2017; Sanner et al. 2019)
- Test of LPI searching for variations in the constants of Nature
  - linear temporal drift (Rosenband et al. 2008; Guéna et al. 2012; Leefer et al. 2013; Godun et al. 2014; Huntemann et al. 2014)
  - harmonic temporal variation (Van Tilburg et al. 2015; Hees et al. 2016)
  - spatial variation w.r.t. the Sun gravitational potential (Ashby et al. 2007; Guéna et al. 2012; Leefer et al. 2013; Peil et al. 2013)
  - Transients (Derevianko and Pospelov 2014; Wcisło, Morzyński, et al. 2016; Roberts et al. 2017; Wcisło, Ablewski, et al. 2018)
- Test of LPI with a clock redshift experiment (Vessot 1989)


## Tests of Local Position Invariance: GP-A



(Will 2014)


• H-Maser Gravity Probe A (1976)

# Gravity Probe A (GP-A) (1976)



- Test of LPI with a clock redshift test (Vessot and Levine 1979; Vessot, Levine, et al. 1980; Vessot 1989)
- Continuous two-way microwave link between a spaceborne hydrogen maser clock and ground hydrogen masers
- ullet One parabola of the rocket  $\lesssim 2$  hours of data
- $\bullet$  Frequency shift verified to  $7\times 10^{-5}$
- $\bullet$  Gravitational redshift verified to  $1.4\times10^{-4}$

## Tests of Local Position Invariance: Galileo



(Will 2014)

GALILEO

- H-Maser Gravity Probe A (1976)
- New test: Galileo eccentric satellites (Delva, Puchades, et al. 2018; Herrmann et al. 2018)



- European Global Navigation Satellite System (GNSS)  $(22.2 \times 10^9$  euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes;



- European Global Navigation Satellite System (GNSS)  $(22.2 \times 10^9$  euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes;
- A global network of sensor stations receiving information from the Galileo satellites;



- European Global Navigation Satellite System (GNSS)  $(22.2 \times 10^9$  euros in 20 years)
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes;
- A global network of sensor stations receiving information from the Galileo satellites;
- The control centres computing information and synchronising the time signal of the satellites;



- European Global Navigation Satellite System (GNSS)  $(22.2 \times 10^9 \text{ euros in } 20 \text{ years})$
- 24 satellites + 6 spares in medium Earth orbit on three orbital planes;
- A global network of sensor stations receiving information from the Galileo satellites;
- The control centres computing information and synchronising the time signal of the satellites;

#### The story of Galileo satellites 201 & 202

• Galileo satellites 201 & 202 were launched with a Soyuz rocket on 22 august 2014 on the wrong orbit

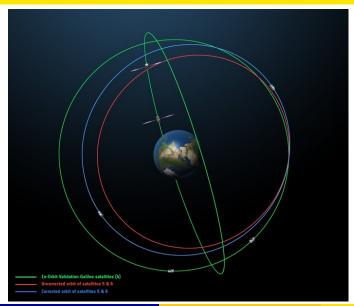
• Launch failure was due to a temporary interruption of the propellant supply to the thrusters, resulting on a wrong orientation of the satellites during the last stage of orbit injection







#### The story of Galileo satellites 201 & 202


- Galileo satellites 201 & 202 were launched with a Soyuz rocket on 22 august 2014 on the wrong orbit
- Launch failure was due to a temporary interruption of the propellant supply to the thrusters, resulting on a wrong orientation of the satellites during the last stage of orbit injection



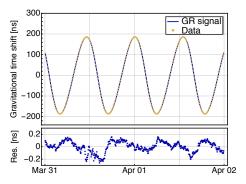




### Galileo satellites 201&202 orbit



Galileo sats 201&202 launched in 08/22/2014 on the wrong orbit due to a technical problem  $\Rightarrow$ GRedshift test (GREAT Study)

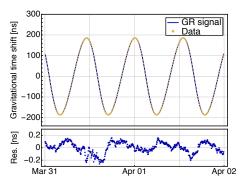




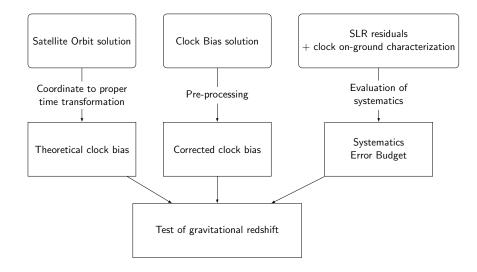

#### Why Galileo 201 & 202 are perfect candidates?

 An elliptic orbit induces a periodic modulation of the clock proper time at orbital frequency

$$\tau(t) = \left(1 - \frac{3Gm}{2ac^2}\right)t - \frac{2\sqrt{Gma}}{c^2}e\sin E(t) + \text{Cster}$$

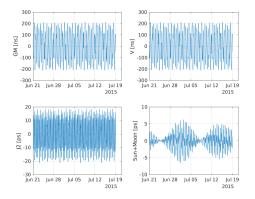



- Very good stability of the on-board atomic clocks → test of the variation of the redshift
- Satellite life-time → accumulate the relativistic effect on the long term
- Visibility 
   → the satellite are
   permanently monitored by
   several ground receivers


#### Why Galileo 201 & 202 are perfect candidates?

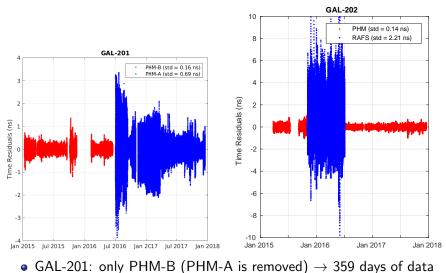
 An elliptic orbit induces a periodic modulation of the clock proper time at orbital frequency

$$\tau(t) = \left(1 - \frac{3Gm}{2ac^2}\right)t - \frac{2\sqrt{Gma}}{c^2}e\sin E(t) + \text{Cster}$$




- Very good stability of the on-board atomic clocks → test of the variation of the redshift
- Satellite life-time  $\rightarrow$  accumulate the relativistic effect on the long term
- Visibility 
   → the satellite are permanently monitored by several ground receivers




- Orbit and clock solutions: ESA/ESOC
- Transformation of orbits into GCRS with SOFA routines
- Theoretical relativistic shift and LPI violation

$$x_{
m redshift} = \int \left[1 - rac{v^2}{2c^2} - rac{U_E + U_T}{c^2}
ight] dt \ ; \ x_{
m LPI} = - lpha \int rac{U_E + U_T}{c^2} dt$$



Peak-to-peak effect  $\sim 400 \text{ ns: model and}$ systematic effects at orbital period should be controlled down to 4 ps in order to have  $\delta \alpha \sim 1 \times 10^{-5}$ 

### Choice of clock



• GAL-202: only PHM (RAFS is removed)  $\rightarrow$  649 days of data

P. DELVA (SYRTE/Obs.Paris)

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites
  - Environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites
  - Environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)
  - We assume nominal sensitivity (upper limit)

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites
  - Environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)
  - We assume nominal sensitivity (upper limit)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites
  - Environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)
  - We assume nominal sensitivity (upper limit)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution

• 1 year SLR Campaign thanks to International Laser Ranging Service

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites
  - Environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)
  - We assume nominal sensitivity (upper limit)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution
  - 1 year SLR Campaign thanks to International Laser Ranging Service
  - SLR residuals give the range error  $\Rightarrow$  clock error in a 1-way time transfer

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites
  - Environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)
  - We assume nominal sensitivity (upper limit)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution
  - 1 year SLR Campaign thanks to International Laser Ranging Service
  - SLR residuals give the range error  $\Rightarrow$  clock error in a 1-way time transfer

We model systematic effects and fit for each the corresponding LPI violation parameters  $\rightarrow$  conservative approach

- Uncertainties of the fitted parameters are estimated with Monte-Carlo method (noise is dominated by random walk)
- Systematic effects acting directly on the frequency of the space clock: temperature and magnetic field variations on board the Galileo satellites
  - Environmental sensitivity of the PHMs has been characterized on the ground (see e.g. Rochat et al. 2012)
  - We assume nominal sensitivity (upper limit)
- Orbit modelling errors (e.g. mismodeling of Solar Radiation Pressure) are strongly correlated to the clock solution
  - 1 year SLR Campaign thanks to International Laser Ranging Service
  - SLR residuals give the range error  $\Rightarrow$  clock error in a 1-way time transfer

We model systematic effects and fit for each the corresponding LPI violation parameters  $\rightarrow$  conservative approach

|          | LPI violat $[\times 10^{-5}]$ | Tot unc $[\times 10^{-5}]$ | Stat unc $[\times 10^{-5}]$ | Orbit unc $[\times 10^{-5}]$ | Temp unc $[\times 10^{-5}]$ | $\begin{array}{c} \text{MF unc} \\ [\times 10^{-5}] \end{array}$ |
|----------|-------------------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------------------------------------------|
| GAL-201  | -0.77                         | 2.73                       | 1.48                        | 1.09                         | 0.59                        | 1.93                                                             |
| GAL-202  | 6.75                          | 5.62                       | 1.41                        | 5.09                         | 0.13                        | 1.92                                                             |
| Combined | 0.19                          | 2.48                       | 1.32                        | 0.70                         | 0.55                        | 1.91                                                             |

- Local Position Invariance is confirmed down to  $2.5 \times 10^{-5}$ uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation

|          | LPI violat $[\times 10^{-5}]$ | Tot unc $[\times 10^{-5}]$ | Stat unc $[\times 10^{-5}]$ | Orbit unc $[\times 10^{-5}]$ | Temp unc $[\times 10^{-5}]$ | $\begin{array}{c} \text{MF unc} \\ [\times 10^{-5}] \end{array}$ |
|----------|-------------------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------------------------------------------|
| GAL-201  | -0.77                         | 2.73                       | 1.48                        | 1.09                         | 0.59                        | 1.93                                                             |
| GAL-202  | 6.75                          | 5.62                       | 1.41                        | 5.09                         | 0.13                        | 1.92                                                             |
| Combined | 0.19                          | 2.48                       | 1.32                        | 0.70                         | 0.55                        | 1.91                                                             |

- Local Position Invariance is confirmed down to  $2.5 \times 10^{-5}$ uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)

|          | LPI violat $[\times 10^{-5}]$ | Tot unc $[\times 10^{-5}]$ | Stat unc $[\times 10^{-5}]$ | Orbit unc $[\times 10^{-5}]$ | Temp unc $[\times 10^{-5}]$ | $\begin{array}{c} \text{MF unc} \\ [\times 10^{-5}] \end{array}$ |
|----------|-------------------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------------------------------------------|
| GAL-201  | -0.77                         | 2.73                       | 1.48                        | 1.09                         | 0.59                        | 1.93                                                             |
| GAL-202  | 6.75                          | 5.62                       | 1.41                        | 5.09                         | 0.13                        | 1.92                                                             |
| Combined | 0.19                          | 2.48                       | 1.32                        | 0.70                         | 0.55                        | 1.91                                                             |

- Local Position Invariance is confirmed down to  $2.5 \times 10^{-5}$ uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)
- Nice outreach video by Derek Muller on Veritasium (youtube channel)

|          | LPI violat $[\times 10^{-5}]$ | Tot unc $[\times 10^{-5}]$ | Stat unc $[\times 10^{-5}]$ | Orbit unc $[\times 10^{-5}]$ | Temp unc $[\times 10^{-5}]$ | $\begin{array}{c} \text{MF unc} \\ [\times 10^{-5}] \end{array}$ |
|----------|-------------------------------|----------------------------|-----------------------------|------------------------------|-----------------------------|------------------------------------------------------------------|
| GAL-201  | -0.77                         | 2.73                       | 1.48                        | 1.09                         | 0.59                        | 1.93                                                             |
| GAL-202  | 6.75                          | 5.62                       | 1.41                        | 5.09                         | 0.13                        | 1.92                                                             |
| Combined | 0.19                          | 2.48                       | 1.32                        | 0.70                         | 0.55                        | 1.91                                                             |

- Local Position Invariance is confirmed down to  $2.5 \times 10^{-5}$ uncertainty, more than 5 times improvements with respect to Gravity Probe A measurement
- The test is now limited by the clock magnetic field sensitivity (along the z axis), which effect is highly correlated to the LPI violation
- PRL cover: Delva et al. PRL 121.23 (2018) and Herrmann et al., PRL 121.23 (2018)
- Nice outreach video by Derek Muller on Veritasium (youtube channel)