

CORRECTING ARCHIVE ASTEROID ASTROMETRY BY GAIA DR2

P. Tanga

Observatoire de la Côte d'Azur, Nice, France

Astrometry reduced by Gaia DR2 (D. Tholen)

	PPMXL	Gaia DR2
Exposure time (sec)	30	30
Zero point (mag)	25.04 ± 0.27	25.48 ± 0.08
N stars in field	436	669
N stars rejected	93	91
N stars in solution	343	578
RMS (arcsec)	0.171	0.040
Reduced chi	4.527	0.829
Right ascension	06:16:06.4073	06:16:06.4063
Declination	+00:17:05.961	+00:17:05.903

University of Hawaii 2.24 m telescope

Astrometry (mostly) calibrated with pre-Gaia catalogues

• Minor Planet Center (200 million astrometric positions, for ~800k asteroids)

		Fraction	Average residuals	m
	CCD	94.1 %	380 mas	2013
	WISE, HST	4.2 %	580 mas	al.
	pre-CCD	1.2 %	500-1000 mas	s et
-	Hipparcos, occultations,	0.5 %	10-150 mas	Desmars

• Comparison to Gaia DR2 (14.099 asteroids)

Fraction	Residuals
52 %	< 1 mas
96 %	< 5 mas

Bias effect: astrometry reduced with Gaia DR2 vs. PPMXL

Asteroid (1132) Hollandia

Liverpool Telescope + VST (8 hours apart) & MPC ground-based data (~1900 positions)

(credits: Gaia GBOT team)

Bias effect: astrometry reduced with Gaia DR2 vs. PPMXL

Asteroid (1132) Hollandia

Liverpool Telescope + VST (8 hours apart) & MPC ground-based data (~1900 positions)

Bias effect: orbit post-fit residuals

How to solve the problem of systematic errors?

• Two options:

- Re-reduce old observations from raw data (ex. NAROO project)
 - Best performance in theory
 - Not always possible (data not available)
 - On large sample of asteroids it is an enormous task
- Compute locally the expected systematic errors in old catalogue and apply a correction to the existing astrometry (debiasing)

How to solve the problem of systematic errors?

• Two options:

- Re-reduce old observations from raw data (ex. NAROO project)
 - Best performance in theory
 - Not always possible (data not available)
 - On large sample of asteroids it is an enormous task

 Compute locally the expected systematic errors in old catalogue and apply a correction to the existing astrometry (debiasing)

Correction of catalogue errors: "de-biasing"

- The idea is to use the "best" available catalogue as a reference
- "Local" positions of stars in the old catalogs, at epoch t, can be compared to the same stars in the reference (here assumed at t = J2000.0):
 - On average, on a given sky area:

$$\begin{split} \Delta \mathrm{RA} &= \Delta \mathrm{RA}_{2000} + \Delta \mu_{\mathrm{RA}}(t-2000.0) \\ \Delta \mathrm{DEC} &= \Delta \mathrm{DEC}_{2000} + \Delta \mu_{\mathrm{DEC}}(t-2000.0) \end{split}$$

A new approach to debiasing

Method 1 (used up to now): corrections of catalogs computed on a healpix tassellation of the sky (Farnocchia et al. 2015 Referred to PPMXL & SMASS)

A new approach to debiasing

Method 1 (used up to now): corrections of catalogs computed on a healpix tassellation of the sky (Farnocchia et al. 2015 Referred to PPMXL & SMASS)

Method 2 (our own) : corrections of single archive positions (MPC) referred to Gaia DR2

No discontinuities !

Can be tuned by: Single-survey/telescope FOV size Magnitude depth

The challenge: which stars were used for the calibration?

- Catalogue
 - Information at by Minor Planet Center (for a fraction)
- The parameters that can reasonably be guessed, for each observatory or survey
 - FOV size: from survey documentation, articles
 - Faintest stars used

Impossible to know in general

 Position of the asteroid in the FOV, FOV orientation, specific selection of reference stars...

The challenge: which stars were used for the calibration?

- Catalogue
 - Information at by Minor Planet Center (for a fraction)
- The parameters that can reasonably be guessed, for each observatory or survey
 - FOV size: from survey documentation, articles
 - Faintest stars used

Impossible to know in general

 Position of the asteroid in the FOV, FOV orientation, specific selection of reference stars...

> Our parameters for each observation: Original catalogue FOV size Limiting magnitude

Example on a specific field

Procedure:

- ADQL query of the catalogues (Gaia and original one) in the FOV
- Star match, filtering
- Propagation of positions at the epoch of the observation

Original catalogue: UCAC4 corrections x 1000

Dependence of average correction from limiting magnitude

Challenges: number of observatories/telescope configurations

Challenges: number of observatories/telescope configurations

Sky distribution of differences

Example on 4 catalogues, observations of 3000 asteroids

Distribution of differences in RA, Dec at J2000

Conclusions

New debasing now operational

- But time for computation / remote catalogue query is critical!

First encouraging results from orbits fits

The limits

- The exact choices for the observation (telescope configuration, FOV center...) and the data reduction (choice of stars...) cannot be reproduced.
- ... but often our procedure is the only possible (and the best we can do!)

Astrometry, Earth Rotation and Reference Systems in the Gaia era - Paris - Journées 2019

Challenges : several catalogues

 Information about the catalogue used is provided by MPC (for a consistent fraction of data)

Gaia DR2 - Solar System - single transit astrometric performance

A&A 616, A13 (2018) https://doi.org/10.1051/0004-6361/201832900 © ESO 2018

Gaia Data Release 2

Astronomy Astrophysics

Gaia Data Release 2

Observations of solar system objects

Special issue

Gaia Collaboration, F. Spoto^{1,2,*}, P. Tanga¹, F. Mignard¹, J. Berthier², B. Carry^{1,2}, A. Cellino³, A. Dell'Oro⁴,
D. Hestroffer², K. Muinonen^{5,6}, T. Pauwels⁷, J.-M. Petit⁸, P. David², F. De Angeli⁹, M. Delbo¹, B. Frézouls¹⁰,
L. Galluccio¹, M. Granvik^{5,11}, J. Guiraud¹⁰, J. Hernández¹², C. Ordénovic¹, J. Portell¹³, E. Poujoulet¹⁴,

Residuals from the orbital fit of Gaia DR2 data only (AL direction) The Gaia collaboration: Spoto et al. 2018

Residuals on a single asteroid

367 Amicitia

Astrometry reduced by Gaia DR2 (D. Tholen)

Global statistics to Sept 11, 2019

	Number of Gaia-based NEO Obs.	Astrometric Solution (arcsec)	Object Centroiding (arcsec)	RSS (arcsec)
UH 2.24-m	4850	0.007	0.057	0.058
CFHT	638	0.012	0.042	0.049
Subaru	86	0.014	0.043	0.048

No problem! No systematic errors, same reference as Gaia DR2. Catalogue errors are negligible.

Some challenges for asteroid astrometry

A detailed look: declination bands

Probably linked to older surveys used to computed proper motions and different telescopes S/N hemisphere

A detailed look: large scale patterns

Due to global rotation pattern in the proper motion of bright stars (favoured here) and to different reference system. (amplitude +/- 30 mas)

Astrometry, Earth Rotation and Reference Systems in the Gaia era - Paris - Journées 2019

Example: the Trojan (5638) Deikoon

Courtesy J. Desmars (LESIA, Obs. de Paris)

Main correction: proper motion

Large-scale systematics for bright stars ($G \lesssim 12$)

Smoothed $\Delta \mu_{\alpha*}$, $\Delta \mu_{\delta}$ calculated for the HIPPARCOS subset of *Gaia* DR2

$$\Delta \mu_{\alpha*} = \mu_{\alpha*}^{\mathsf{DR2}} - (\alpha^{\mathsf{DR2}} - \alpha^{\mathsf{HIP}}) \cos \delta / (24.25 \text{ yr}) \Delta \mu_{\delta} = \mu_{\delta}^{\mathsf{DR2}} - (\delta^{\mathsf{DR2}} - \delta^{\mathsf{HIP}}) / (24.25 \text{ yr})$$

$$\left. \right\}$$

$$(9)$$

Very clear signature of global rotation $\simeq 0.15$ mas yr⁻¹ (cf. L18, Fig. 4)

From Lindegren et al. 2018 https://www.cosmos.esa.int/documents/29201/1770596/Lindegren_GaiaDR2_Astrometry_extended.pdf see also "Known issues" page of Gaia DR2

Standard approach: Farnocchia et al. 2015

Correction computed on healpix tassellation of the sky.

Reference: a subset of PPMXL, in common with 2MASS.

Example of resulting

– Fast

- Computed once, applicable to old/new data.

- Limitations:
 - Rigid (tassellation is fixed)
 - Discontinuities between adjacent zones.
 - No relation to the real observing conditions.

