Asteroid astrometry in the Gaia era

How Gaia observations are changing our view of asteroid astrometry

F. Spoto1, P. Tanga1, B. Carry1,2, D. Michalik3

Observatoire de la Côte d’Azur, Laboratoire Lagrange1
Observatoire de Paris, IMCCE2
ESA/ESTEC3

"Journées 2019: Astrometry, Earth Rotation and Reference Systems in the Gaia era"
Paris, 7/10/2019
Our knowledge of the asteroid population

- 800,000 known objects
- 780,000 Main belt asteroids
- 20,000 Earth-crossers
- 2,500 Kuiper Belt Objects
Typical asteroid observation residuals

Post-fit residuals on the sky: Observed - Computed

Available ground-based astrometry
- 200 millions of observations
- Typical accuracy: 400 / 500 mas
- 2 000 accurate observations (mostly radar)
Typical asteroid observation residuals

Post-fit residuals on the sky: Observed - Computed

Available ground-based astrometry
- 200 millions of observations
- Typical accuracy: 400 / 500 mas
- 2 000 accurate observations (mostly radar)
Typical asteroid observation residuals

Post-fit residuals on the sky: Observed - Computed

Available ground-based astrometry
- 200 millions of observations
- Typical accuracy: 400 / 500 mas
- 2000 accurate observations (mostly radar)

Main consequences
- Orbital elements: large uncertainties
- Poorly known orbits
- Observations focused on NEAs
Why do we need good astrometry?

The Yarkovsky effect

Description
- Subtle non-gravitational perturbation
- Resulting from the anisotropic thermal emission of the solar radiation
- Dependence on physical parameter usually unknown

Consequences
- Secular semi-major axis drift
- Necessary to understand the evolution of our Solar System
- Collisional history
- Delivery of NEAs from the Main Belt
Why do we need good astrometry?

The Yarkovsky effect

Description
- Subtle non-gravitational perturbation
- Resulting from the anisotropic thermal emission of the solar radiation
- Dependence on physical parameter usually unknown

Consequences
- Secular semi-major axis drift
- Necessary to understand the evolution of our Solar System
- Collisional history
- Delivery of NEAs from the Main Belt

Detections
- Detected from the astrometry: least-square orbit determination (6 orbital elements + Yarkovsky parameter)
- Very accurate orbits & long time span
- Small objects (proportional to 1/D)
Yarkovsky detections (before Gaia)

800,000 asteroids
900 small with « good » orbits uncertainty < 3e-9 au (~ 450 m)
No Main Belt asteroids

87 detections
(Del Vigna et al. 2018)

All Earth-crossers
Gaia Data Release 2

Semi-major axis (au)

Earth-crossers

Main belt asteroids

Kuiper belt objects

Asteroids contained in DR2
- 14,016 objects in the Main Belt
- 81 Earth-crossers
- 2 Trans-Neptunian objects
Gaia DR2 asteroid observation residuals

Post-fit residuals in the ALong scan – ACross scan plane

Gaia asteroid astrometry
- ~ 2 millions of observations
- 22 months
- Accuracy is in the ALong scan direction
Gaia DR2 asteroid observation residuals

Post-fit residuals in the ALong scan – ACross scan plane

Gaia asteroid astrometry
- ~ 2 millions of observations
- 22 months
- Accuracy is in the ALong scan direction
Gaia DR2 asteroid observation residuals

Post-fit residuals in the ALong scan – ACross scan plane

Gaia asteroid astrometry

- ~ 2 millions of observations
- 22 months
- Accuracy is in the ALong scan direction
- Typical accuracy:
 - < 5 mas faint objects
 - < 1 mas bright objects
Gaia DR2 asteroid observation residuals

Post-fit residuals in the ALong scan - ACross scan plane

Gaia asteroid astrometry

- ~ 2 millions of observations
- 22 months
- Accuracy is in the ALong scan direction
- Typical accuracy:
 - < 5 mas faint objects
 - < 1 mas bright objects

How can we make a comparison between Gaia and ground-based astrometry?
Gaia DR2 vs ground-based asteroid astrometry

Post-fit residuals on the sky
Gaia DR2 vs ground-based asteroid astrometry

Main « issues » :

- 2 millions of very accurate observations
- New vision of asteroid astrometry
- Short observational arc
How to combine Gaia and ground-based observations?

1. Debiasing of old stellar catalogs

Discovery observations of the asteroid 2014 AA
How to combine Gaia and ground-based observations?

Tens of years of observations | 22 months of Gaia

Today

1. Debiasing of old stellar catalogs

Discovery observations of the asteroid 2014 AA

BIG NEWS AHEAD
STAY TUNED

Next talk: Paolo Tanga
2. Error model: weights to give to each observatory

Catalog dependence

Magnitude dependence

(Observatory, year, catalog, magnitude class) (G96, 2019, V, 2)
2. Error model: weights to give to each observatory

How to combine Gaia and ground-based observations?
Results: new Yarkovsky detections

- Initial sample from Gaia DR2:
 - ~ 60 objects
 - Diameter < 10 km
 - Orbit uncertainty < 1 km

- Detections:
 - 10 new + densities
 - Cases not possible before Gaia
Conclusions

- **Gaia** has already changed our view of the asteroid astrometry

- Our knowledge of the Main Belt is still very limited: we are missing quantity and quality

- We are on the verge of a revolution: Gaia is producing ultra-accurate astrometry for millions of observations

- We need to combined Gaia and tens of ground-based observations to detect subtle non-gravitational perturbations like the Yarkovsky effect

- We have analyzed and corrected all the available astrometry

- The combination has already produced amazing results, but moreover it shows that now we are ready for the next Gaia releases

- To the Main Belt and beyond.