DETERMINATION OF FCN PARAMETERS FROM DIFFERENT VLBI SOLUTIONS, CONSIDERING GEOPHYSICAL EXCITATIONS

Jan Vondrák & Cyril Ron, Astron. Inst. CAS, Prague

Outline:

Introduction, motivation;
Short description of the method;
Data used;
Results;
Conclusions.

Astronomical Institute of the Czech Academy of Sciences

Introduction, motivation:

- Dominant part of nutation is caused by external torques, excerted by the Moon, Sun, and planets;
- Excitations by geophysical fluids (atmosphere, oceans) play much smaller role, but they are now detectable by VLBI;
- Rapid changes of amplitude & phase of the free term (FCN) occur near the epochs of geomagnetic jerks (rapid changes of the second time derivatives of intensity of geomagnetic field), as recently shown by *Malkin (J. Geodyn. 2013)*;
- We developed a method of determining FCN parameters (period, *Q*-factor), considering these effects (Vondrák & Ron, A&A 2017);
- Here we apply this method to several VLBI solutions and models of geophysical excitations, and compare the results.

Astronomical Institute of the Czech Academy of Sciences

Short description of the method:

- We use Brzezinski's broad band Liouville equations to integrate numerically the influence of geophysical excitations, and compare the results with observed celestial pole offsets (CPO):
 - To this end, we use standard atmospheric and oceanic excitations from different sources;
 - The effect of geomagnetic jerks is modeled by impulse-like excitation functions whose amplitudes are determined to yield the best agreement with observations.
 - Observed CPO are corrected for the difference between the FCN parameters as used in standard IAU model of nutation and the estimated ones, to account for resonance effects;
- We find FCN parameters that yield the best fit between integrated and observed CPO values, using standard least-squares estimation.

Astronomical Institute of the Czech Academy

Brzeziński's broad-band Liouville equations in celestial frame:

 $\ddot{P} - i(\sigma_C' + \sigma_f')\dot{P} - \sigma_C'\sigma_f'P =$

 $= -\sigma_{C} \left\{ \sigma_{f}'(\chi_{p}' + \chi_{w}') + \sigma_{C}'(a_{p}\chi_{p}' + a_{w}\chi_{w}') + i \left[(1 + a_{p})\dot{\chi}_{p}' + (1 + a_{w})\dot{\chi}_{w}' \right] \right\}$

where

P is the motion of spin axis in celestial system; σ_C is the Chandler frequency in terrestrial frame; σ'_C , σ'_f are Chandler and FCN frequency in celestial frame; χ'_p , χ'_w are pressure and wind terms of excitation in celestial frame; $a_p = 9.200 \times 10^{-2}$, $a_w = 2.628 \times 10^{-4}$ are numerical constants.

Mathews-Herring-Buffet transfer function (nonrigid/rigid Earth model) is used to account for the difference between FCN parameters (\$,) as used in standard IAU model of nutation and the estimated one:

$$T_{MHB}(\sigma) = \frac{e_{R} - \sigma}{e_{R} + 1} N_{0} \left| 1 + (1 + \sigma) \left(Q_{0} + \sum_{j=1}^{4} \frac{Q_{j}}{\sigma - s_{j}} \right) \right|$$

where e_R is the dynamical ellipticity of the rigid Earth, σ is nutation frequency (in ITRF), *N*, *Q* are constants and s_j are resonance frequencies [cpsd] for 1. Chandler wobble - CW ($P_{ter.} \approx 435 \text{ d}$); 2. Retrograde Free Core Nutation - RFCN ($P_{cel.} \approx 430 \text{ d}$); 3. Prograde Free Core Nutation - PFCN ($P_{cel.} \approx 1020 \text{ d}$); 4. Inner Core Wobble - ICW ($P_{ter.} \approx 2400 \text{ d}$).

 $\rightarrow s_2 = \sigma'_f / 6.30038 - 1$ [cpsd] in terrestrial frame.

Astronomical Institute of the Czech Academy of Sciences

Data used (1986.0-2018.5):

Celestial pole offsets data in 1-day steps:

- IERS C04 combined solution;
- IVS combined solution;
- Solution by Bundesamt fuer Kartografie und Geodaesie (BKG);
- Solution by Goddard Space Flight Center (GSF);
- Institute for Applied Astronomy (IAA);
- Observatoire de Paris (OPA);
- U.S. Naval Observatory (USN).
 - ◆ All data filtered to contain periods between 10 and 6000 days,
 - For FCN parameters different from the values used in IAU2000 model of nutation, these are further corrected by using MHB transfer function.

Astronomical Institute of the Czech Academy of Sciences

Data used (cont.):

Atmospheric and oceanic excitations:

- No atmospheric and oceanic excitations;
- NCEP/NCAR atmosphere with IB correction (representing a simple oceanic model), in 6-hour steps;
- ESM GFZ atmosphere + ocean, in 3-hour steps.
 - All data, originally given in terrestrial frame, were re-calculated into celestial frame, centered and smoothed to contain only periods longer than 10 days.

Data used (cont.):

Geomagnetic jerks (GMJ):

- Eight epochs of GMJ, found in literature, are used:
 1991.0, 1994.0, 1999.0, 2003.5, 2004.7, 2007.5, 2011.0, 2014.0;
- The amplitudes a of bell-shaped excitations, centered around these epochs and lasting 200 days, are estimated from the fit to observations. The excitations have the form

$$\chi'_{GMJ} = \frac{a}{2} \left[1 + \cos \frac{2\pi (t - t_0)}{200} \right]$$

Results:

without A+O excitations

Astronomical Institute

of the Czech Academy of Sciences Journées 2019 Astrometry, Earth Rotation and Reference Systems in the GAIA era, Paris, October 2019

9

Results:

Excitations NCEP IB

Astronomical Institute

of the Czech Academy of Sciences Journées 2019 Astrometry, Earth Rotation and Reference Systems in the GAIA era, Paris, October 2019

10

Results:

Excitations EMS GFZ

Astronomical Institute of the Czech Academy

of Sciences

Journées 2019 Astrometry, Earth Rotation and Reference Systems in the GAIA era, Paris, October 2019

11

Conclusions:

- All results based on different VLBI solutions agree at the level of their formal uncertainties, if the same excitation model is used;
- The best rms fit to observations is always obtained with IERS C04 solution;
- Different models of excitation yield values of FCN parameters whose differences often exceed their formal errors
 - Quite surprisingly, the best fit is obtained when atmospheric and oceanic excitations are neglected;
- Inclusion of GMJ effect always improves the fit, the most significant improvement occurs in case of EMS GFZ excitations, but
 - In some cases it brings about relatively large changes of FCN parameters, exceeding their formal errors.

Astronomical Institute of the Czech Academy