

IERS Rapid Service / Prediction Center Products and Services: Improvements, Changes and Challenges, 2017 to 2019

Nick Stamatakos, Maria Davis, Nathan Shumate

- Improvements since 2017.
- EO Matrix Calculator Update.
- Items from 2018 IERS Annual Report.
- Future Development Work.

Improvements since 2017: Improved Celestial Pole Offset computations.

Operational Celestial Pole Offset (CPO)

- Code prior to March 29, 2019:
 - Some contributors provided CPO in terms of (dψ, dε)_{1976/1980} and some in terms of (dX, dY)_{2006/2000}.
 - > All observations transformed to and combined in terms of $(d\psi, d\varepsilon)_{1976/1980}$.
 - Complex code; difficult to maintain; difficult to implement bias/system changes.

- Implemented starting March 29, 2019:
 - ➢ All VLBI contributions in terms of (dX, dY)_{2006/2000.}
 - Observations combined using (dX, dY)_{2006/2000}.
 - Reliable code; easier to maintain; easy to implement bias/system changes through configuration files.
 - Predictions method based on auto-regressive algorithm as shown in the flowchart below.

Naval Oceanography

Improvements since 2017: *Improved Celestial Pole Offset computations since March 29, 2018*.

• Improvement in accuracy

• Period 1: Jan. 1, 2016 to March 28, 2018 versus Period 2: March 29, 2018 to July 31, 2019

Prediction Day	Period 1: dX RMS (milliarcsec)	Period 2: dX RMS (milliarcsec)	% decrease	Prediction Day	Period 1: dY RMS (milliarcsec)	Period 2: dY RMS (milliarcsec)	% decrease
0-day	0.110	0.099	11	0-day	0.106	0.086	23
1-day	0.111	0.106	5	1-day	0.099	0.087	14

Improvements since 2017: Updates of inputs to the EOP C/P software.

(W)

- Updated VLBI 24-hour and intensives series solutions:
 - ➢ USNO updated 27 Sept 2017, 23 Aug 2018, and 01 Aug 2019; GSFC updated 29 Aug 2019.
- Updated Atmospheric Angular Momentum Inputs:
 - Navy Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Global Environmental Model (NAVGEM) updated on 17 May 2018 to 1.4.3eop.
 - ≻~31 km grid spacing

➢ Ozone Assimilation

- ≻ Model top ~60 km
- ➢ Hybrid 4D-Var Data Assimilation
- Engineering fit to better model upper atmospheric (zonal) winds. Applies to above 500 mbars.

NAVGEM and NOAA Chi3 Wind Forecast Term; Mean and Root Mean Errors; June 1, 2018 – September 15, 2019

EO matrix On-line Calculator based on IERS Conventions 2010 CIP/CIO/TIO Paradigm: *Background*

- URL for new EO matrix calculator: http://maia.usno.navy.mil/t2c36cipcio/t2c36cipcio.html (URL may change in the near future for non-DoD customers. Backup at http://toshi.nofs.navy.mil...)
 - Based on the Chapter 5, IERS Conventions (2010) (Tech Note 36), Celestial Intermediate Pole and Origin and Terrestrial Intermediate Origin, non-equinox paradigm.
 - Written in FORTRAN with HTML and PHP web interface codes.
 - Relying heavily on code from http://maia.usno.navy.mil/conventions/2010/2010_update/chapter5/software/ and Standards of Fundamental Astronomy (SOFA) libraries.
 - Observable quantities are from a version of finals2000A.data or .daily
 - If necessary, the polar motion and UT1 observables are interpolated.
 - Long period tidal terms are removed and then, long period tidal, diurnal, and sub-diurnal tidal terms are added back to these observables after interpolation.
 - Sub-diurnal/diurnal tides, CPOs, and librations are used by default, but can be turned off.
 - Outputs include the ITRF to GCRS and several intermediate transformations.

EO matrix On-line Calculator based on IERS Conventions 2010 CIP/CIO/TIO Paradigm: User-Interface

EO Matrix Calculator (USNO) ×		Θ	
> C 🛈 maia.usno.navy.mil/t2c36ci	pcio/t2c36cipcio.html	☆ :	
	EARTH ORIENTATION MATRIX CALCULATOR (T2C36 CIPCIO)		
	IERS Rapid Service Prediction Center (IERS RS/PC)		
	Earth Orientation Parameters Division, US Naval Observatory		
Year Month	Day Hour Min Secs		
Enter a start date and time (UTC):			
Enter a stop date and time (UTC):			
Number of desired intervals			
Choose any of these desired input variations:			
Include Diurnal and Sub-Dirurnal Tides:			
Include Celestial Pole Offsets:			
Include Librations:			
Enter the <u>MJD</u> on which the <u>finals2000A.daily</u> fi			
recent <u>finals2000A.data</u> file will be used:			
Choose any of the desired intermediate matrix ou addition to the default terrestrial to celestial trans	tput quantities in sformation output:		
Polar Motion: ERA:	•		
Celestial-to-Intermediate:			
Do you wish <u>quaternion</u> output instead of matric	es for the above quantities:		
Generate Matrix			

USNO ITRF to GCRS (EO matrix) On-line Calculator based on IERS Conventions 2010 CIP/CIO/TIO: *Summary of Differences Between Equinox-Based and CIP/CIO/TIO TN36 Calculator:*

<u> Old</u>

- Observations (x, y, UT1-UTC, dX, dY) from finals2000A
- Equinox-based (Bias-Precession-Nutation): iau_c2teqx (IAU)
 - IAU 2006 precession & IAU2000A nutation: iau_pnm06a, iau_bpn2xy, iau_s06 (IAU)
- Polar Motion: iau_pom00 (IAU)
 - Earth Tides: RG_ZONT2(IERS Conventions 2010)
 - Diurnal & Sub-diurnal Tides: ORTHO_EOP & CNMTX (IERS)
 - "Sub-diurnal Nutation" quasi-diurnal terms: PMSDNUT2 (IERS)
 - TIO Locator (s') iau_sp00 (IERS)
- Sidereal Time: iau_GST06 (IAU)
 - Earth Tides: RG_ZONT2 (IERS Conventions 2010)
 - Diurnal & Sub-diurnal Tides: ORTHO_EOP & CNMTX (IERS)

<u>New</u>

- Observations (x, y, UT1-UTC, dX, dY) from finals 2000A
- Celestial Intermediate Origin & Pole based: Matrix (USNO)
- Bias-Precession-Nutation: iau_C2IXYS (IAU)
 - IAU 2006 precession & IAU2000A nutation (X, Y): iau_xy06 (IAU); (CIO locator (s) iau_s06 (IAU)
- Polar Motion: iau_pom00 (IAU)
 - Earth Tides: RG_ZONT2 (IERS Conventions 2010)
 - Diurnal & Sub-diurnal Tides: ORTHO_EOP & CNMTX (IERS)
 - "Sub-diurnal Nutation" quasi-diurnal terms: PMSDNUT2 (IERS)
 - TIO Locator (s') iau_sp00 (IERS)
- Earth Rotation Angle: iau_era00 (IAU)
 - Earth Tides: RG_ZONT2 (IERS Conventions 2010)
 - Diurnal & Sub-diurnal Tides: ORTHO_EOP & CNMTX (IERS)
 - Sub-diurnal Libration: UT1LIBR (IERS)

USNO ITRF to GCRS (EO matrix) On-line Calculator based on IERS Conventions 2010 CIP/CIO/TIO: User-Interface

Naval Oceanography

Items from 2018 IERS Annual Report: Nxdaily/off-hours EOP

solutions anomalous results.

- Previous to 2018, the Nxdaily / off-hours USNO predictions had statistically shown improvement in at least Polar Motion (PM) predictions.
- Table below shows the improvement for Polar Motion <MJD> 1-day prediction RMS values. The solution generated on day <MJD> predicts Polar Motion at <MJD+1>. As more observations from the UGS ultra become available after the 17:00 UTC "daily" solution, at 21:10, 03:10, and 09:10, the estimate of PM at midnight <MJD+1> should improve.
 - Results for 2016 and 2017 show trend. Results for 2018 do not show trend.

РМх	Time of	solution in milliarcs	n UTC. Res econds	ults in	РМу	Time of solution in UTC. Results in milliarcseconds					
Year	17:00 UTC	21:10	03:10	09:10	Year	17:00 UTC	21:10	03:10	09:10		
2016	0.34	0.29	0.16	0.08	2016	0.25	0.22	0.08	0.09		
2017	0.35	0.29	0.13	0.08	2017	0.26	0.20	0.09	0.09		
2018	0.31	0.29	0.29	0.27	2018	0.23	0.21	0.28	0.21		

Items from 2018 IERS Annual Report: Nxdaily/off-

hours EOP solutions anomalous results.

Timeline of Nxdaily EOP 1-day prediction solutions in relation to the EOP "daily" solution produced at 17:00 UTC.

- Most likely reason for almost no improvement in waiting for more data at <MJD> 21:10, <MJD+1> 03:10 and <MJD+1> 17:10 was recently identified found as a code update issue.
 - New IGS ultras data was downloaded and new EOP solutions were updated; however, omission in code change did not always update final EOP results.
 - As of 15-Sept-2019, the code has been updated and should produce final EOP results with updated IGS ultra inputs.

Naval Oceanography

Items from 2018 IERS Annual Report: Published Statistics Versus Weekly Reported Statistics.

- Polar Motion residuals for IGS products reported in IERS annual report and in weekly published statistics are seemingly inconsistent.
 - Weekly stats published at http://maia.usno.navy.mil/ser7/gpspol.asc

	RMS marcsec						Weekly report, 1st instance:.							
	IGS Finals		IGS Rapids		IGS Ultras		IGS Final	58579.	50 30	0.00	0.00		0.01	0.02
	PMx	РМу	PMx	PMy	PMx	РМу	IGS Rapid	58597.	50 18	- 0.00	0.00	-	0.04	0.03
2018 IERS Annual Report	0.02	0.01	0.03	0.03	0.05	0.04	IGS Ultra	58598.	00 2	2 0.00	-0.01		0.02	0.04
Weekly report 1 st	0.01	0.02	0.04	0.03	N/A	N/A	Weekly report, 2 nd instance:							
instance*							Coming	Latest	#	Mea (series-	n BullA)	S	tandar	d Deviat:
Weekly report 2 nd	0.02	0.04	0.04	0.04	0.04	0.04	Series	Day	x	У	UT LOD	х	У	UT
instance*							IGS Final	58579.5 3	0 0.00	0.00 -0.	001* 0.000*	0.02	0.04	0.016*
* Statistics taken from IERS Bulletin A 25 April 2019. Note that RMS								58596.5 3	0 0.00	0.00 -0.	007* 0.002*	0.04	0.04	0.040*
derived from mean and standard deviation which is reported in the file.							IGS Ultra	58597.25 1	20 -0.01	-0.01 -0.	003* 0.003*	0.04	0.04	0.037*

Items from 2018 IERS Annual Report: Published Statistic versus weekly reported statistics continued....

- Differences mostly to do with different interpolation methods used
 - IERS Conventions and Weekly report 1st instance Polar Motion results are computed using smoothing, weighted cubic spline coefficients.
 - Weekly report 2nd instanced Polar Motion results computed using simple cubic spline results.
- Since 11 July 2019, method for computing IGS finals Polar Motion residuals has been updated to use smoothing, weighted cubic spline.
 - More accurately reflects the residuals between the contributor and the combination.
 - Users currently only are provided smoothing spline results provided at each midnight epoch in reported EOP files (finals.daily, finals2000A.daily, etc) and not at each input epoch.

Future Development Work: Studying combined U.S. Navy AAM and OAM inputs to better prediction polar motion and UT1-UTC

- Improvements in near-term prediction accuracy may be possible using Earth's AAM and OAM.
 - U.S. Navy Global Environmental Model (NAVGEM) AAM
 - U.S. Navy Hybrid Coordinate Ocean Model (HYCOM)

- Provides another data source which is only somewhat less accurate than IGS polar motion predictions.
- May be used operationally within a few years.

Future development work: W-series VLBI Intensives using combination of VLBA and VLBI radio telescopes.

- Interested in using VLBA Mauna Kea (Mk) antenna in IVS
 Intensives because of its geography and global proximity to Kokee
 - Yet, the two stations are far enough apart (> 500 km) that adverse weather conditions may not impact both stations simultaneously.
- Mauna Kea Wettzell-North characterization observations will continue from October to January twice a week until 60 observations have been achieved
- Mauna Kea Wettzell (MkWz) baseline has observed 60 sessions over 9 months as of July 2019
- To characterize any baseline with Mk, a new station-position must first be determined
 - Volcanic activity mid-2018 relocated station
- USNO is proposing to use MkWz as a backup to Ishioka Wettzell INT2s on Saturdays from December 2019 to March 2020, while Ishioka is unable to participate in operational observations

Future Development Work: Newer Optimal Estimation Techniques and Improving UTGPS.

- Investigating the use a Kalman filter, improved smoothing cubic spline or other optimal estimation techniques to improve and increase robustness of EOP combination results.
 - Personnel also studying improved prediction techniques.
- Investigating how to improve the estimation of the UT1-like quantity derived from GPS orbits – UTGPS.
 - Since 30 March 2017, UTGPS influence on the combination has been de-weighted.
 - Degradation over the past few years in accuracy of results.
 - Ongoing studies to improve current UTGPS estimates.
 - Updating complementary filtering
 - Use of IIR only spacecraft in modeling.
 - Updating solar force modeling.

• BACKUP SLIDES

User-Interface Continued

W

- User chooses dates and time intervals.
 - Code produces a file containing the ITRF to GCRS transformation and desired intermediate quantities.
 - Number of intervals currently limited to 100.
 - Special exceptions can be arranged.
 - Dedicated server will lift this restriction.
- Standard output is the transformation matrix from terrestrial to celestial frames.
 - Optional quaternion / Euler parameter output.
- Intermediate options: polar motion, ERA, and celestial-to-intermediate matrix or quaternion outputs.
 - Useful for debugging purposes.
 - Useful to see motion of rotation axes relative to Earth fixed (ITRF) and celestial (GCRS).