

Combined analysis of free and forced nutations from VLBI group delays

Leonid Petrov, Richard Ray NASA GSFC

Nutation estimation from VLBI

- VLBI measures antenna voltage and time
- Voltage data are correlated and Fourier transformed
- Correlation function spectrum is used to compute group delays
- Group delays are used for estimation of daily nutation offset time series
- Nutation time series is used for deriving nutation spectrum
- Nutation spectrum is used for evaluation of BEPs

Do we need last three separate steps?

Deficiencies of the traditional approach

- Correlations between parameters are neglected Consequences:
 - Estimates are not optimal
 - Uncertainties are biased
- Change in nutation during experiment is neglected
- Forced nutations and free nutation are treated differently and inconsistently.

Alternative: direct approach

• . . .

• Group delays are used for estimation of BEPs

Group delays are used for estimation of Earth rotation spectrum

Group delays are used for estimation of the resonant curve

Spectrum estimation: details

- Estimation of complex spectrum for polar motion $(E_1 + i E_2)$, and real valued axial rotation (E_3)
- Crafting the sequence of frequencies:
 - major forced nutations
 - tidal frequencies
 - dense sampling ($f = f_0 + i \ 1/T$) within the FCN and PIFCN bands
 - ad hoc frequencies cusps around major tidal spectral lines, ter-diurnal signal around S_3 – K_3 , etc
 - adding constraints to unresolved spectral multiplets
- Estimation of limited EOP spectrum in a global solution. Nutations and high-frequency EOP are captured.

Spectral analysis

- Fitting the forced nutation spectrum
- Incorporation of OAM and AAM
- \bullet Fitting the forced nutation spectrum + the FCN

Empirical transfer function (Real part)

Empirical transfer function, real part (zoom)

Empirical transfer function (Imaginary part)

Free core nutation spectrum

Putting into play geophysical excitations

AAM:

- Take NASA GEOS-FPIT model ($0.625^{\circ} \times 0.5^{\circ} \times 3^{h} \times 72$ layers)
- Extrapolate beneath the model surface layer
- Expand into B-spline basis
- \bullet Re-grid to the regular $2'\times 2'$ grid
- Interpolate to the high-resolution surface
- Integrate AAM at the B-spline basis
- Compute the AAM spectrum

- pressure term
- motion term (current)
- tidal and non-tidal contribution

EOP, AAM, and OAM spectra

Resonant frequency is derived from forced nutations

EOP, AAM, and OAM spectra

Resonant frequency is derived from the free nutation

Polar motion spectrum in the FCN band

Summary:

- We can directly estimate of the EOP spectra from group delays
- Effect of the ocean tides still needs improvement
- We may close the FCN excitation budget by accounting for ocean and atmospheric excitation