

Impact of major earthquakes on variations of Earth rotation

Cs. Fodor^{1,2}, R. Heinkelmann³, S. Modiri^{3,4}, S. Raut^{3,4}, H. Schuh^{3,4} and P. Varga²

¹ Eötvös Loránd University, Hungary

² Research Centre for Astronomy and Earth Sciences, Geodetic and Geophysical Institute, Hungary

³ Helmholtz-Centre Potsdam - GFZ German Research Centre for Geosciences, Germany

⁴ Technische Universität Berlin, Germany

2019. 10. 07-09.

Excitation functions:

$$\psi = 1.61(\Delta I_{xz} + i\Delta I_{yz})/(C - A)$$

$$\psi_3 = -\Delta I_{zz}/C_m$$

where $\psi(t) = \psi_x(t) + i\psi_y(t)$ and $\psi_3 = -\Delta LOD/LOD$ Xu et al. 2014

Ψ(t): excitation function of polar motion $Ψ_3$ (t): excitation function of ΔLOD $ΔI_{xz}$, $ΔI_{yz}$, $ΔI_{zz}$: perturbations of inertia moment components C, A: polar and equationial moments of inertia ($C = 8.0438 \times 10^{37} \text{ kg m}^2$ and $A = 8.0177 \times 10^{37} \text{ kg m}^2$) C_m: mantle axial moment ($C_m = 7.1236 \times 10^{37} \text{ kg m}^2$)

Tidal friction causes significantly increased seismicity around ± 45°
latitudes through the variation of flattening

elmholtz Centre

Applied formulation

Xu et al. 2014: Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory

- Location of the event (latitude, longitude, depth)
- Focal mechanism (strike, dip, slip)
- Moment magnitude (Mw)

 Coseismic changes in ΔLOD and Polar Motion

leimholtz Centre

Variations in ERP due to earthquakes

2019. 10. 07-09.

JOURNÉES 2019

GGI

Variations in ERP due to earthquakes

GGI

Helmholtz Centre

Variations in ERP due to earthquakes

GGI

Helmholtz Centre

6/14

Major earthquakes (2000-2016)

JOURNÉES 2019

2019. 10. 07-09.

GFZ

Helmholtz Centre

1st Approach: Prediction errors (IERS)

2019. 10. 07-09.

JOURNÉES 2019

GGI

8/14

2nd Approach: GPS observations residuals

Data: IGS input for the ITRF2014

Wavelet Coherence Analysis between coseismic energy and Residual PMx GPS

Wavelet coherence is a measure of the correlation between two signals.

2019. 10. 07-09.

JOURNÉES 2019

2nd Approach: GPS observations residuals

Data: IGS input for the ITRF2014

Wavelet Coherence Analysis between coseismic energy and Residual PMy GPS

Wavelet coherence is a measure of the correlation between two signals.

2019. 10. 07-09.

JOURNÉES 2019

2nd Approach: GPS observations residuals

Data: IGS input for the ITRF2014

Wavelet coherence is a measure of the correlation between two signals.

2019. 10. 07-09.

JOURNÉES 2019

GFZ

Helmholtz Centre

Conclusions, Outlook

- Prediction errors

- No convincing evidence of seismic activity, but theory shows otherwise
 - The energy of earthquakes could also propagate into other processes, not just Earth rotation (e.g. changing the center of mass by such a small value that would be impossible to measure)

- GPS residuals

- Polar Motion shows high correlations at the epochs of large earthquakes, but not just at the epoch of large events
- LOD on the other hand shows long term relationship between the two processes

 \rightarrow analyse prediction with daily resolution

→ for testing the formulation, compute the parameters for the maximal effect of coseismic changes

→ study Polar Motion phase and amplitude values instead of cartesian coordinates (episodic changes should be more visible in phase data)

Conclusions, Outlook

- Prediction errors

- No convincing evidence of seismic activity, but theory shows otherwise
 - The energy of earthquakes could also propagate into other processes, not just Earth rotation (e.g. changing the center of mass by such a small value that would be impossible to measure)

- GPS residuals

- Polar Motion shows high correlations at the epochs of large earthquakes, but not just at the epoch of large events
- LOD on the other hand shows long term relationship between the two processes

 \rightarrow analyse prediction with daily resolution

→ for testing the formulation, compute the parameters for the maximal effect of coseismic changes

→ study Polar Motion phase and amplitude values instead of cartesian coordinates (episodic changes should be more visible in phase data)

Thank you for your attention!

GGI

GFZ

elmholtz Centre

Acknowledgements

This research was financially supported by Campus Mundi scholarship.

Special thanks to the Journées organizers and GFZ.

References

Xu, C., Sun, W., and Chao, B. Fong (2014), Formulation of coseismic changes in Earth rotation and low-degree gravity field based on the spherical Earth dislocation theory, *J. Geophys. Res. Solid Earth*, 119, 9031–9041, doi: 10.1002/2014JB011328.

Contact: fodor.csilla92@gmail.com

