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ABSTRACT. A precise modeling of light trajectories in the solar system on the sub-micro-
arcsecond and nano-arcsecond scale of accuracy requires the metric tensor of solar system bodies

in post-linear approximation. The Multipolar Post-Minkowskian formalism represents a framework

for determining the metric density in the exterior of a compact source of matter, which can be

regarded as massive solar system body. The knowledge of the metric density, frequently been

called gothic metric, allows to deduce the metric tensor. Some aspects are considered about how

to determine the metric density and the metric tensor from the field equations of gravity.

1. INTRODUCTION

An advancement in astrometric science towards sub-micro-arcsecond and nano-arcsecond level

in angular measurements of celestial objects requires considerable progress in the theory of light

propagation through the curvilinear space-time of the solar system. In curved space-time the light

signals propagate along null-geodesics, governed by the geodesic equation which reads ẍα(λ) +

Γαµν ẋ
µ(λ) ẋν(λ) = 0, where xα(λ) is the four-coordinate of the light signal as function of the

affine curve parameter λ, a dot means total derivative with respect to λ, and the Christoffel

symbols Γαµν = g
αβ

(

gβµ , ν + gβν , µ − gµν , β
)

/2 are functions of the metric tensor gαβ, and a

comma denotes partial derivative with respect to the four-coordinates, e.g. f , µ = ∂f /∂x
µ and

f , µν = ∂
2f /∂xµ ∂xν , etc. Accordingly, a precise modeling of light trajectories implies a precise

knowledge of the metric of solar system bodies. The metric tensor can be series expanded in powers

of the gravitational constant G, called post-Minkowskian expansion,

gαβ (x) = ηαβ +

∞
∑

n=1

Gn h
(nPM)
αβ (x) (1)

where the first and second term, h
(1PM)
αβ and h

(2PM)
αβ , are the linear and post-linear term of the metric

perturbation, which are required for determining the light trajectory on the sub-micro-arcsecond

and nano-arcsecond scale of accuracy. The orthogonality relation gαρ gρβ = δ
α
β enables to switch

between the contravariant and covariant components of the metric tensor.

The Multipolar Post-Minkowskian (MPM) formalism represents a perturbative approach for

determining the metric density, gαβ, in the exterior of a compact source of matter, defined by

gαβ =
√
−g gαβ or gαβ =

√

−g gαβ (2)

where g = det (gρσ) and g = det
(

gρσ
)

is the determinant of the covariant components of the

metric tensor and metric density, respectively. The post-Minkowskian expansion of the metric

density reads

gαβ (x) = ηαβ −
∞
∑

n=1

Gn h
αβ

(nPM) (x) (3)

where the first and second term, h
αβ

(1PM) and h
αβ

(2PM), are the linear and post-linear term of the

gothic metric perturbation. The orthogonality relation gαρ gρβ = δ
α
β enables to switch between

the contravariant and covariant components of the gothic metric.
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The MPM formalism determines the metric density in the exterior of a massive body, having

arbitrary shape, inner structure, oscillations, and rotational motions. Due to Eq. (2) the know-

ledge of the metric density allows to deduce the metric tensor. In what follows, some aspects are

considered about how to obtain the metric density and metric tensor from the field equations.

2. THE FIELD EQUATIONS OF GRAVITY

The field equations relate the metric tensor gµν to the stress-energy tensor of matter Tµν ,

Rµν −
1

2
gµν R =

8π G

c4
Tµν (4)

where Rµν = Γ
ρ
µν , ρ − Γρµρ , ν + Γρσρ Γσµν − Γρσν Γσµρ is the Ricci tensor and R = gµν Rµν is the Ricci

scalar. The field equations constitute a set of ten coupled non-linear partial differential equations

for the ten components of the metric tensor gµν of space-time, which in differential geometry is

modeled by a semi-Riemannian manifoldM. The contracted Bianchi identities imply that only six of
these field equations (4) are independent, which determine the ten components of the metric tensor

up to a passive coordinate transformation (keep points of manifold fixed and change coordinates)

from the old {y} to the new coordinate system {y ′},

yµ → y ′µ . (5)

The field equations (4) are invariant under these (infinitely many) coordinate transformations,

known as passive general covariance of the field equations. That means, if the set (M, g) is a
solution of the field equations, then the set (M, g′) is also a solution of the same field equations,
where g′αβ = A

µ
α A
ν
β gµν is the metric tensor in these new coordinates with A

µ
α being the Jaco-

bian matrix Aµα = ∂y
µ/∂y ′α of the passive coordinate transformation. These sets are physically

equivalent and describe the same physical system. The metric tensors have different components

in different coordinate systems, g′αβ 6= gµν , but as geometrical objects (Eq. (2.23) in Hawking,
Ellis (1974)) they are equal, g′ = g, because they attribute the same distance to the same pair

of points P and Q of the manifold: dg′ (P,Q) = dg (P,Q) (infinitesimal distance of these pairs
is assumed). For later purposes it is useful to consider an active coordinate transformation (keep

coordinates fixed and change points of manifold),

Ψ :M→M (6)

which is a C∞ differentiable mapping of each point of the manifold reversibly unique to another

image point of the same manifold, P → Ψ(P). Hence, the coordinates are changed yµ (P) →
y ′µ (P). The field equations (4) are invariant under these (infinitely many) diffeomorphisms, known
as active general covariance of the field equations. That means, if the set (M, g) is a solution
of the field equations, then the set (M, g′) is also a solution of the same field equations, where
g′ = Ψ∗g is the pullback of the metric tensor, g′αβ = A

µ
α A
ν
β gµν , with A

µ
α being the Jacobian matrix

Aµα = ∂y
µ/∂y ′α of the active coordinate transformation. These sets are physically equivalent

and describe the same physical system (Section 7.1 in Hawking,Ellis (1974); for the associated

problem of Leibniz Equivalence see Earman,Norton (1987) and Lusanna,Pauri (2006)). These

metric tensors attribute the same distance of a pair of points of the manifold and their images,

dg′ (P,Q) = dg (Ψ (P) ,Ψ(Q)) (infinitesimal distance of these pairs and their images is assumed).
But these metric tensors are not equal, g′ 6= g, because they attribute different distances to the
same pair of points of the manifold: dg′ (P,Q) 6= dg (P,Q) (e.g. Gaul, Rovelli, (2000)). However,
if a Killing vector field exists onM and the diffeomorphism Ψ proceeds along the congruence of that
Killing vector field, then the metric and pullback metric are equal, g′ = g, and the diffeomorphism

is an isometry (Section 2.6 in Hawking,Ellis (1974)).
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3. LANDAU-LIFSCHITZ FORMULATION OF GRAVITY

The theory of gravity has a geometrical interpretation in physical curvilinear space-time and

a field-theoretical interpretation in auxiliary flat space-time (e.g. text below Eq. (11) in Gupta

(1954) or Section 8.4 in Feynman (1995) or part 5 in Box 17.2 in Misner,Thorne,Wheeler (1973));

for an excellent historical overview we refer to Brian Pitts, Schieve (2018). So one distinguishes

between a physical manifold M covered by curvilinear coordinates yµ and endowed with metric

gµν (y), a flat background manifold M0 covered by curvilinear coordinates x
α and endowed with

metric g0αβ (x), and a diffeomorphism

Φ :M0 →M (7)

which is a C∞ differentiable mapping of each point q ∈ M0 of the flat background manifoldM0

reversibly unique to another point p ∈ M of the physical manifoldM (hence dimM0 = dimM);
it is not relevant whether (7) exists everywhere or only on finite domains Φ : V ⊆M0 → U ⊆M.
The field equations (4) are not invariant under (7), because the manifolds M and M0 are

different with respect to their geometrical properties: the curvature tensor of M expressed in

terms of gµν (y) is non-zero, R
µ
ανβ (y) 6= 0, in any coordinate system {y} which maps the physical

manifold, while the curvature tensor ofM0 expressed in terms of g
0
αβ (x) vanishes, R

µ
ανβ (x) = 0,

in any coordinate system {x} which maps the flat background manifold. In particular, the metric
tensor g0 of M0 (e.g. in Cartesian coordinates g

0 is given by ηαβ = diag (−1,+1,+1,+1)) and
the metric tensor g ofM can never be related by a pullback: g0 6= Φ∗g.
But the diffeomorphism (7) is an active coordinate transformation, which makes it possible to

pullback the metric tensor g of the physical manifold M (given by gµν (y)) to the metric tensor

Φ∗g which propagates as tensorial field on the flat backgroundM0 (given by gαβ (x))

gαβ (x) =
∂yµ

∂xα
∂yν

∂xβ
gµν (y) . (8)

In the same way, the Ricci tensor and energy-momentum tensor onM are pulled back onM0 . By

means of these relations the field equations of gravity (4) on the physical manifoldM can be pulled
back to field equations on the flat background manifoldM0. Then, the sets (M, g) and (M0,Φ

∗ g)

are physically equivalent, iff the metric tensor g on the physical manifoldM is determined by the

field equations (4), while the pulled-back metric tensor Φ∗ g on the flat background manifoldM0

(i.e. gαβ = Φ
∗µν
αβ gµν in Eq. (8)) is determined by the pulled-back field equations on M0 (cf.

Section 7 in Hawking,Ellis (1974), especially text below Eq. (7.51) in Hawking,Ellis (1974), as well

as text below Eq. (7.10) in Carroll (2013)).

In the Landau-Lifschitz formulation one makes a detour and does not consider the metric tensor

gµν (y) but the metric density g
µν (y), which is pulled back from the physical manifold to the flat

background manifold. A detailed mathematical representation of the Landau-Lifschitz formulation

is given by Sections 1 and 2 in Petrov,Kopeikin,Lompay,Tekin (2017) as well as by Section 7 in

Hawking,Ellis (1974). These field equations take the following form (cf. Eqs. (20.20) - (20.22) in

Misner,Thorne,Wheeler (1973), Eq. (6.6) in Poisson,Will (2014)),

Hαρβσ, ρσ (x) =
16π G

c4
(−g (x))

(

Tαβ (x) + tαβLL (x)
)

. (9)

The l.h.s. is the Landau-Lifschitz superpotential, Hαρβσ = gαβ gρσ − gασ gβρ, while the r.h.s. is
the Landau-Lifschitz complex, where tαβLL is the Landau-Lifschitz pseudotensor which represents,

roughly to speak, the energy-momentum distribution of the gravitational fields. The field equations

(9) are manifestly Lorentz-covariant and constitute a set of ten coupled non-linear partial differential

equations for the ten components of the metric density gαβ. Because of the identity Hαρβσ, ρσβ = 0

(implying energy-momentum conservation, cf. Eqs. (6.7) - (6.8) in Poisson,Will (2014)) only six
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equations are independent, which determine the ten components of the metric density up to a

passive transformation of coordinates which map the flat background manifold.

Thus far, no specific choice of the coordinates of the flat background manifold has been im-

posed. For practical calculations in celestial mechanics, in the theory of light propagation, or in the

theory of gravitational waves, it is, however, very useful to choose harmonic coordinates to cover

the flat background space-timeM0, which are introduced by the gauge condition

gαβ, β (x) = 0 =⇒ �g x
α = 0 (10)

where the relation on the r.h.s. follows from the relation on the l.h.s. where �g is the co-

variant d’Alembert operator which in harmonic coordinates reads �g = g
ρσ∇ρ∇σ and ∇ρ de-

notes covariant derivative with respect to xρ. Harmonic coordinates are small deformations of the

Minkowski coordinates, therefore it is useful to decompose the pulled-back metric density into the

flat Minkowskian metric plus a small perturbation,

gαβ (x) = ηαβ − hαβ (x) (11)

so that the gothic metric perturbation h
αβ
propagates as dynamical field on the flat background

space-timeM0 (Section 7.1 in Carroll (2013) and Section 6.2 in Poisson,Will (2014)). By inserting

(10) and (11) into (9) one obtains the Landau-Lifschitz field equations (also known as reduced

field equations of gravity) in the following form (Eq. (5.2b) in Thorne (1980))

� h
αβ
(x) = −16π G

c4
(

ταβ (x) + tαβ (x)
)

(12)

where � = ηρσ ∂ρ∂σ is the flat d’Alembert operator in terms of harmonic coordinates in the flat

background space-timeM0. The terms on the r.h.s. in (12) are given by

ταβ = (−g) Tαβ and tαβ = (−g) tαβLL +
c4

16π G

(

h
αρ

, σ h
βσ

, ρ − h
αβ

, ρσ h
ρσ
)

. (13)

The ten coupled non-linear partial differential equations (12) are exact field equations of gravity

in the Landau-Lifschitz formulation in harmonic coordinates. Because of the gauge condition

h
αβ

, β = 0, which follows from (10) and (11), only six equations are independent of each other.

The harmonic gauge (10) does not uniquely select one harmonic coordinate system but a class

of infinitely many harmonic systems, because it allows for a residual gauge transformation between

two arbitrary harmonic reference systems {x} and {x ′},

x ′α = xα + ϕα (x) (14)

if the gauge vector ϕα satisfies the homogeneous Laplace-Beltrami equation �g ϕ
α = 0; Eq. (14)

has been elucidated by Fig. 1 in Zschocke (2019). The field equations (12) are invariant under

the residual gauge transformation (14), which permits extensive simplifications of the form of

the metric density. Moreover, the calculations of the MPM formalism are considerably simplified

by assuming that {x} are just Minkowskian (i.e. straight harmonic) coordinates, while {x ′} are
considered as curvilinear harmonic coordinates.

4. THE MULTIPOLAR POST-MINKOWSKIAN FORMALISM

The MPM approach has originally been introduced in Thorne (1980), while considerable exten-

sions and important advancements have later been worked out in Blanchet,Damour (1986) and in a
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series of subsequent investigations. The MPM formalism is based on the post-Minkowski expansion

of the field equations (12),

h
αβ
=

∞
∑

n=1

Gn h
αβ

(nPM) and ταβ = Tαβ +

∞
∑

n=1

Gn ταβ
(nPM)

and tαβ =

∞
∑

n=1

Gn tαβ
(nPM)

. (15)

Inserting (15) into (12) yields a hierarchy of field equations,

� h
αβ

(1PM) (x) = −
16π

c4
Tαβ (x) , (16)

� h
αβ

(2PM) (x) = −
16π

c4

(

ταβ
(1PM)

(x) + tαβ
(1PM)

(x)
)

, (17)

...

� h
αβ

(nPM) (x) = −
16π

c4

(

ταβ
((n−1)PM)

(x) + tαβ
((n−1)PM)

(x)
)

. (18)

Each of the field equations (16) · · · (18) represents an equation in flat space-time. The MPM
formalism is an approach for solving that hierarchy of field equations iteratively, starting with the

first iteration (16), where Tαβ is the energy-momentum tensor of matter in the approximation of

special relativity. The general solution of the gothic metric in linear-order h
αβ

(1PM) (Thorne (1980),

Blanchet,Damour (1986), Damour,Iyer (1991)) is inserted into the second iteration (17) which

yields the gothic metric in post-linear order, h
αβ

(2PM), and so on. Using this iterative approach, it

has been demonstrated in Blanchet,Damour (1986) that the general solution of these field equa-

tions depends on six source-multipoles, IL, JL,WL, XL, YL, ZL, which are integrals over the energy-

momentum tensor of the compact source of matter (cf. Eqs. (5.15) - (5.20) in Blanchet (1998)).

Furthermore, using the residual gauge freedom (14), it has been demonstrated in Blanchet,Damour

(1986) that the general solution of (16) · · · (18) can be written as follows,

gαβ [IL, JL,WL, XL, YL, ZL] = ηαβ −
∞
∑

n=1

Gn h
αβ can
(nPM) [ML, SL] + gauge terms (19)

which is valid in the exterior of the body. The canonical piece, h
αβ can
(nPM) , depends on two multipoles:

mass-type multipole ML (accounts for shape, inner structure, and oscillations of the body) and

current-type multipole SL (accounts for rotational motions and inner currents of the body), which

are related to the source-multipoles via non-linear equations (Eqs. (6.1a) and (6.1b) in Blanchet

(1998)). All those terms in the metric density which depend on the gauge vector ϕα are called

gauge terms and represent unphysical degrees of freedom because they have no impact on physical

observables which are, by definition, coordinate-independent scalars (Bergmann (1961)).

The MPM formalism has been developed for understanding the generation of gravitational

waves by an isolated source of matter, like binary black holes. Gravitational waves decouple from

the source in the intermediate zone and they do finally propagate with the speed of light into the far

wave-zone of the gravitational system. In the far wave-zone the gravitational fields have two degrees

of freedom, where the transverse traceless (TT) gauge of the metric tensor becomes relevant be-

cause the TT terms in the metric tensor carry the physical information (Blanchet,Kopeikin,Schäfer

(2001)). In the far wave-zone, the TT projection of the metric density equals the TT projection

of the metric tensor (cf. Eq. (7.119) in Carroll (2013)),

h
TT
αβ = h

TT
αβ in the far − zone . (20)
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That is why there is no need to determine the metric tensor in the far wave-zone of the system.

The gothic metric perturbation in TT gauge in terms of radiative moments UL and VL, which are

time-derivatives of source multipoles, is given by Eq. (64) in Blanchet,Kopeikin,Schäfer (2001).

5. THE METRIC TENSOR

For determining light trajectories in the near-zone of the solar system one needs the metric

tensor of solar system bodies. While in principle one might use the TT gauge, one should, however,

not expect much simplification, because such a nice relation like (20) does not exist,

h
TT
αβ 6= hTTαβ in the near − zone . (21)

Thus, relativistic astrometry necessarily requires the determination of the metric tensor in the

near-zone of the gravitational system. The metric density and the metric tensor contain the

same physical information about the gravitational system, because they are related to each other

reversibly unique by Eqs. (2). Using these relations, it has been shown in Zschocke (2019) that

the general form of the metric tensor in the exterior of a solar system body is given by

gαβ [IL, JL,WL, XL, YL, ZL] = ηαβ +

∞
∑

n=1

Gn h
(nPM)
αβ can [ML, SL] + gauge terms (22)

where the canonical piece, h
(nPM)
αβ can, depends only on two multipoles ML and SL. The linear term

and the post-linear term of the metric perturbation, h
(1PM)
αβ can and h

(2PM)
αβ can, respectively, are explicitly

given by Eqs. (109) - (111) and (115) - (117) in Zschocke (2019). The gauge terms depend on

the gauge vector ϕα and have no impact on physical observables.

6. CONCLUSION

Future astrometry at the sub-micro-arcsecond and nano-arcsecond level of accuracy in as-

trometric measurements requires considerable progress in modeling the trajectory of light signals

through the curved space-time of the solar system. Such a precise determination of light trajectories

implies the knowledge of the metric tensor gαβ of solar system bodies in the post-linear approxi-

mation. The Multipolar Post-Minkowskian formalism represents a framework for determining the

metric density gαβ in the exterior of a massive body having arbitrary shape and inner structure,

oscillations and rotational motions. The knowledge of the metric density allows to deduce the

metric tensor gαβ. Some aspects of that approach have been considered which are relevant for

future investigations in the theory of light propagation and relativistic astrometry.
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