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ABSTRACT. A few years ago, a new approach allowed to determine in an exact form the time

transfer functions in Schwarzschild-like spacetimes within the weak-field, linearized approximation.

We give a brief survey of the main results thus obtained and we indicate how the new procedure

can be used to compute the contributions to the travel time of light rays due to the mass and spin

multipoles of a rotating axisymmetric body.

1. INTRODUCTION

In the area of highly precise astrometry as well in a lot of experiments performed to test the

metric theories of gravity in the Solar System, it is of crucial interest to know the travel time of a

light ray between an emitter A and a receiver B as a function of the position of the emitter, the

position of the receiver and the instant of reception. We call such a function “a reception time

transfer function”. To be more precise, consider a light ray propagating through a vacuum in a

region of spacetime covered by a coordinate system xµ = (x0, x), with x0 = ct and x = (x i),

i = 1, 2, 3, t being supposed to have the dimension of a time, and the x i the dimension of a length

for the sake of simplicity. Denote by (x0A , xA) the point-event where the ray is emitted and by

(x0B , xB) the point-event where it is observed. The light ray joining (x
0
A , xA) and (x

0
B , xB) is a null

geodesic of spacetime, which implies that the coordinate light travel time (x0B − x0A )/c = tB − tA is
a function of xA, xB and tB, so that we can write

tB − tA = Tr (xA, tB, xB). (1)

Knowing the reception time transfer function (TTF) Tr (xA, tB, xB) associated with a light ray
enables us to model the time delay and the Doppler tracking along this ray. It also enables us to

compute the propagation direction of the ray at the point of observation (Le Poncin-Lafitte et al

2004), which explains the relevance of the notion of TTF in relativistic astrometry (see, e.g., Hees

et al 2014, Bertone et al 2017). Nevertheless, in spite of a large amount of works, the explicit

computation of all the possible TTFs in a given spacetime remains an unsolved problem, even in the

special case of static, spherically symmetric spacetimes. Only partial results have been obtained,

using several methods which are in fact equivalent. We summarize here the procedure presented

in Teyssandier and Le Poncin-Lafitte 2008.

It is supposed that the metric of spacetime may be expanded in a power series of the Newtonian

gravitational constant G as follows:

gµν(x ;G) = ηµν +

∞
∑

n=1

Gng
(n)
µν (x), (2)

where ηµν is the Minkowski metric: ηµν = diag(1,−1,−1,−1). The procedure is based on the
assumption that there exists at least a null geodesic linking the emitter and the receiver such that

the corresponding reception TTF can be expanded in a power series of G as follows:

Tr (xA, tB, xB;G) =
RAB

c
+

∞
∑

n=1

GnT (n)r (xA, tB, xB), (3)
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where RAB is the ‘Euclidean’ distance between the positions xA and xB, that is

RAB = |xB − xA| =
[

(x1B − x1A )2 + (x2B − x2A )2 + (x3B − x3A )2
]1/2

. (4)

Under these assumptions, it may be shown that each perturbation term T (n)r is given by an

integral involving only the metric perturbations g
(1)
µν , ..., g

(n)
µν and the functions T (1)r , ..., T (n−1)r taken

on a Minkowskian null straight line passing through the spatial positions xA and xB.

However, two major problems are raised by the iterative procedure outlined above. First, the

method yields a single TTF, thus excluding the possibility to model the gravitational lensing, where

multiple images appear. Moreover, the perturbation functions T (n)r involve ‘enhanced terms’,

namely terms which are infinite for some positions of the emitter and the receiver (for the pioneer

work, see Klioner and Zschocke 2010; see also Teyssandier 2012). An example of this pathology

is furnished by the TTF calculated with this procedure in a static spherically symmetric spacetime,

as it may be seen in the next section.

2 CASE OF STATIC SPHERICALLY SYMMETRIC SPACETIMES

For an isolated spherically symmetric body of mass M, the coordinates (x0, x) may be chosen

so that the metric takes the form

ds2 =

(

1− 2m
r
+ 2β

m2

r2
− 3
2
β3
m3

r3
+ · · ·

)

(dx0)2−
(

1 + 2γ
m

r
+
3

2
γ2
m2

r2
+
1

2
γ3
m3

r3
+ · · ·

)

dx
2,

(5)

where m = GM/c2, r = |x | = [
∑3
i=1(x

i)2]1/2, dx2 =
∑3
i=1(dx

i)2, and β, β3, γ, γ2, γ3 are

post-Newtonian parameters equal to 1 in general relativity.

Owing to the static character of spacetime, each TTF for the metric (??) is independent of the

reception time. So we shall henceforth omit the index r standing for ‘reception’. The procedure

outlined in the Introduction yields a TTF as follows (for the terms in m2, see Le Poncin-Lafitte et

al 2004 and Klioner and Zschocke 2010; for the terms in m3, see Linet and Teyssandier 2013):

TSpher(xA, xB) =
RAB

c
+ TShap(xA, xB)−

m2RAB

crArB

[

(γ + 1)2

1 + cosψAB

− κ2
ψAB

sinψAB

]

+
m3(rA + rB)RAB

cr2A r
2
B (1 + cosψAB)

[

(γ + 1)3

1 + cosψAB

− κ2(γ + 1)
ψAB

sinψAB

+ κ3

]

+O(m4), (6)

where rA = |xA|, rB = |xB|, RAB is defined by (??), ψAB is the measure of the angle between xA and

xB laid down by

cosψAB =
xA

rA
· xB
rB
, 0 ≤ ψAB ≤ π, (7)

TShap is the Shapiro time delay, namely (see, e.g., Blanchet et al 2001 and refs. therein)

TShap(xA, xB) =
(γ + 1)m

c
ln

(

rA + rB + RAB

rA + rB − RAB

)

(8)

and κ2 and κ3 are constants defined by

κ2 = 2(γ + 1)− β +
3

4
γ2, (9)

κ3 = 4(γ − β + 1)− 2βγ +
3

2
γ2 +

1

4
(3β3 + γ3). (10)

An enhanced effect is ensured since each term in Eq. (??) – except RAB – tends to infinity when

ψAB → π. This divergent behaviour is not surprising. If ψAB is sufficiently close to π, the straight
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line joining xA and xB is passing through a region of strong field. Consequently, a convergent

expansion in a series of powers of G cannot be reasonably expected for a TTF. Clearly, the second

assumption is not realist in this case. Moreover, it is obvious that if rA and rB are sufficiently large

and ψAB is sufficiently close to π, there exist at least two distinct light rays joining the emitter

and the receiver and confined to the zone of weak field: this means that the usual theory of the

time transfer functions does not work in a configuration of gravitational lensing. So, the theory

summarized in the Introduction must be revised.

3. EXACT SOLUTIONS FOR LINEARIZED SPHERICALLY SYMMETRIC MET-

RICS

3.1 The complete set of time transfer functions

In order to overcome the difficulties raised in the previous section, we can reason differently.

The dominant divergent terms in Eq. (??) are manifestly linked to the linear part of the metric since

they only involve the post-Newtonian parameter γ. So, in a first approach, we may be content with

treating the problem in the weak-field, linearized approximation provided that we use the rigorous

solutions to the null geodesic equations. This program has been successfully carried through for

the Schwarzschild-like metrics in Linet and Teyssandier 2016. The main results of this paper are

summarized in this section.

Since the terms of order m2/r2 in the metric are ignored in the linearized approximation, the

initial metric (??) may be replaced by the metric

ds2 =

(

1− 2m
r

){

(dx0)2 −
[

1 +
2(γ + 1)m

r

]

dx
2

}

. (11)

However, it is well known that the null geodesics considered as points sets are identical for two

conformal metrics (see, e.g. Joshi 2007). So the time transfer functions we are searching for

coincide with the time transfer functions of the metric

ds̃2 = (dx0)2 −
[

1 +
2(γ + 1)m

r

]

dx
2. (12)

Owing to the spherical symmetry of spacetime, each light ray joining xA and xB is confined to

a plane passing through xA, xB and the origin O of the spatial coordinates (this plane is unique

when the position vectors of the emitter and the receiver are not colinear). We adopt spherical

coordinates (r, ϑ, ϕ) such that ϑ = π/2 for the plane containing the light ray and ϕ = 0 for the

point of emission.

A rigorous integration of the null geodesic equations of the metric (??) is easy to perform. It

is shown that there exist two and only two light rays joining A and B, provided that xA and xB are

not aligned with the origin O. We denote by Γ
(0)+
AB (resp. Γ

(0)−
AB ) the light ray joining xA and xB

along which ϕ increases from 0 to ψAB (resp. decreases from 0 to ψAB − 2π). Γ(0)+AB and Γ
(0)−
AB are

Keplerian hyperbolas having the origin O as a focus and respective impact parameters given by

b± =
rArB
√
1− cosψAB

2RAB





√

1 + cosψAB +
2(γ + 1)m(rA + rB − RAB)

rArB

±
√

1 + cosψAB +
2(γ + 1)m(rA + rB +RAB)

rArB



 . (13)

The time transfer functions which correspond to the light rays Γ
(0)+
AB and Γ

(0)−
AB will be denoted

by T+ and T−, respectively. The full expression of these functions can be deduced in a closed form
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from Eq. (??):

T ±(xA, xB) =
1

2c

√

rA + rB + RAB

√

rA + rB +RAB + 4(γ + 1)m

∓ 1
2c

√

rA + rB − RAB

√

rA + rB − RAB + 4(γ + 1)m

+
2(γ + 1)m

c
ln

(

√

rA + rB + RAB + 4(γ + 1)m +
√

rA + rB + RAB
√

rA + rB − RAB + 4(γ + 1)m ±
√

rA + rB − RAB

)

. (14)

These TTFs are regular everywhere: there is no appearance of any enhanced term.

3.2 Time transfer function relevant for the missions in the Solar System

The time transfer function relevant for the missions in the Solar System is T+, which corre-

sponds to 0 ≤ ϕ ≤ ψAB ≤ π. This function may be expanded in a convergent series of powers of
m if and only if

1 + cosψAB ≥
4(γ + 1)m[rA + rB − 2(γ + 1)m]

rArB
. (15)

Then:

T+(xA, xB) =
RAB

c
+ TShap(xA, xB)−

(γ + 1)2m2RAB

crArB(1 + cosψAB)

+
(γ + 1)3m3(rA + rB)RAB

cr2A r
2
B (1 + cosψAB)2

+O(m4). (16)

Thus we formally recover the dominant enhanced terms of orders m2 and m3 in expansion (??),

but now we know that these terms cannot yield the correct behaviour of cT+ when ψAB is very

close or equal to π since the domain of validity of the expansion (??) is delimited by the condition

(??). However, in the present state of the art, the differences π − ψAB in the missions confined in

the Solar System are not sufficiently close to zero to invalidate the use of (??) for estimating the

gravitational time delay with the required accuracy. See, e.g., the discussion of the measurement

of γ with the Cassini 2002 experiment given in Ashby and Bertotti 2010.

4. APPLICATION TO A SPINNING AXISYMMETRIC BODY

Consider now a spacetime containing a single axisymmetric body slowly spinning around its axis

of symmetry. The results set out above can be used to find the TTFs of this spacetime which can

be regarded as first-order perturbations of the spherically symmetric TTFs given by Eq. (??). We

denote by S the angular momentum of the body, we put

n =
x

r
, s =

S

|S|

and we introduce the Kerr parameter a defined by

a =
|S|
Mc
=
G|S|
mc3

. (17)

Since the terms of order m2/r2 are neglected within the weak-field, linearized approximation,

we start up from the metric

ds2 =

(

1− 2W
c2

){

(dx0)2 +
4(γ + 1)

c3
(W .dx)dx0 −

[

1 +
2(γ + 1)W

c2

]

dx
2

}

, (18)
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where W is the Newtonian potential of the body and W is the gravitomagnetic potential generated

by the angular momentum. Outside any sphere of radius r0 centered on the origin O and enclosing

the central body, W and W can be expanded as

1

c2
W (x) =

m

r

[

1−
∞
∑

n=1

Jn

( r0
r

)n
Pn(s.n)

]

(19)

and (see Linet and Teyssandier 2002):

1

c3
W (x) =

ma(s × x)
2r3

[

1−
∞
∑

n=1

Kn

( r0
r

)n
P ′n+1(s.n)

]

, (20)

where Pn(x) is the Legendre polynomial of degree n and P
′
n(x) its derivative with respect to x ; Jn

and Kn are the mass-multipole and spin-multipole moments of order n, respectively.

According to a remark pointed out in subsect. 3.1, the problem comes down to determine

TTFs of the conformal metric

ds̃2 = (dx0)2 +
4(γ + 1)

c3
(W .dx)dx0 −

[

1 +
2(γ + 1)W

c2

]

dx
2. (21)

The metric (??) is supposed to be a small perturbation of the static spherically symmetric

metric (??). So it is natural to assume that there exist time transfer functions T + and T − which
can be expanded as follows:

T ±(xA, xB; Jn,S, Kn) = T ±(xA, xB) +
∞
∑

n=1

Jn∆T ±Jn (xA, xB) + a∆T
±

S
(xA, xB)

+

∞
∑

n=1

Kn∆T ±Kn (xA, xB) + · · · , (22)

where the symbols + · · · stand for the second-order perturbation terms which are neglected.
Substituting the right-hand side of Eq. (??) for T ± into the eikonal equation satisfied by any

TTF (cf. Teyssandier and Le Poncin 2008), and then separating the zeroth-order equation satisfied

by T ± and the first-order equation satisfied by each perturbation term, it can be shown that each

∆T + (resp. ∆T −) can be expressed by an integral taken along the unperturbed light ray Γ(0)+AB

(resp. Γ
(0)−
AB ). These integrals can be calculated with any symbolic computer program.

Computing the contribution of the quadrupole J2 is easy when the unperturbed light rays are

confined to the equatorial plane, i.e. when s.nA = s.nB = 0. We have in this case

J2∆T ±J2 (xA, xB) =
(γ + 1)m

2c
J2

(

r0
b±

)2 [(b±
rA
+
b±
rB

)

1− cosψAB

sinψAB

+
(γ + 1)m

b±

(

ψ±AB − 2
1− cosψAB

sinψAB

)]

, (23)

where b± is given by Eq. (??) and ψ±AB is defined by

ψ+AB = ψAB, ψ−AB = ψAB − 2π. (24)

When ψAB ≪ π, only the unperturbed ray Γ
(0)+
AB is relevant since Γ

(0)−
AB is not confined in the

zone of weak field r ≫ 2m (see Linet and Teyssandier 2016). As a consequence, only J2∆T +J2 has
to be retained in this case. The impact parameter b+ may be expanded as

b+ = rc

[

1 +
(γ + 1)m(rA + rB)

rArB(1 + cosψAB)
+O(m2)

]

, (25)
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where rc is the ‘Euclidean’ distance between the origin O and the straight line passing through xA
and xB, namely

rc =
rArB sinψAB

RAB

. (26)

Then, it follows from Eq. (??) that

J2∆T +J2 (xA, xB) =
(γ + 1)m

2c
J2

r20 (rA + rB)RAB

r2A r
2
B (1 + cosψAB)

+O(m2J2) (27)

when ψAB is sufficiently far from π. The contribution of J2 to the travel time of light given by

Eq. (??) is equivalent to the one previously obtained in the litterature (Klioner 1991, Linet and

Teyssandier 2002, Le Poncin-Lafitte and Teyssandier 2008, Zschocke and Klioner 2011). The

progress is that henceforth the enhanced effect apparently predicted by Eq. (??) when ψAB → π

must be regarded as fictitious. This divergence is just warning us that the right-hand side of Eq.

(??) cannot be expanded in a convergent series in powers of m for any value of ψAB. This feature

does not prevent J2∆T ±J2 from remaining bounded when ψAB → π. Indeed, taking into account

that

lim
ψAB→π

b± = ±
√

2(γ + 1)m rArB
rA + rB

, (28)

it may be inferred from Eq. (??) that

lim
ψAB→π

[

J2∆T ±J2 (xA, xB)
]

=
J2r
2
0 (rA + rB)

2crArB





√

1 +
2(γ + 1)m

rA + rB
+
π

2

√

(γ + 1)m(rA + rB)

2rArB



 . (29)
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