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ABSTRACT

Context. The precession-nutation transformation describes the changing directions on the celestial sphere of the Earth’s pole and an adopted
origin of right ascension. The coordinate system for the celestial sphere is the geocentric celestial reference system, and the two directions
are the celestial intermediate pole (CIP) and the celestial intermediate origin (CIO), the latter having supplanted the equinox for this purpose
following IAU resolutions in 2000. The celestial coordinate triad based on the CIP and CIO is called the celestial intermediate reference
system; the prediction of topocentric directions additionally requires the Earth rotation angle (ERA), the counterpart of Greenwich sidereal
time (GST) in the former equinox based system.
Aims. The purpose of this paper is to review the different ways of calculating the CIP and CIO directions to precisions of a few microarcseconds
over a time span of several centuries, meeting the requirements of high-accuracy applications.
Methods. Various implementations are described, their theoretical bases compared and the relationships between the expressions for the
relevant parameters are provided. Semi-analytical and numerical comparisons have been made, based on the P03 precession and the IAU 2000A
nutation, with slight modifications to the latter to make it consistent with P03.
Results. We have identified which transformations between celestial and terrestrial coordinates involve a minimum number of variables and
coefficients for given accuracy objectives. The various methods are consistent at the level of a few microarcseconds over several centuries, and
equal accuracy is achievable using both the equinox/GST paradigm and the CIO/ERA paradigm. Given existing nutation models, the most
concise expressions for locating the CIP are based on the Fukushima-Williams bias-precession-nutation angles. The CIO can be located to a
few microarcseconds using the CIO locator s. The equation of the origins (EO) is sensitive to the precession-nutation, but can locate the CIO to
a few microarcseconds as long as consistent models are used for EO and precession-nutation.
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1. Introduction

The precession-nutation transformation is a key part of pre-
dicting the apparent directions of celestial bodies on a given
date, accounting for the changing orientation of the Earth’s
axis and also defining the zero point for right ascensions1 (RA).
Since 2003, when IAU Resolutions B1.1-9 came into force, the

� Tables 5−11 for the series for s, s + XY/2, s + XY/2 + D, EO +
∆ψ cos εA, xCIO, yCIO and zCIO are only available in electronic form at
the CDS, via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.125.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/450/855

1 According to the recommendation of the IAU Working Group on
nomenclature for fundamental astronomy (NFA WG), the term “right
ascension” is used here generically, referring either to an equinox or
to the celestial ephemeris origin as required.

celestial intermediate pole (CIP) and celestial intermediate ori-
gin (CIO)2 have been the defining elements in this transforma-
tion. The transformation takes directions in the geocentric ce-
lestial reference system (GCRS) and expresses them either in
the celestial intermediate reference system (CIRS), when using
the CIO, or with respect to the true equator and equinox of date,
when using the equinox. The position of the CIP at any given
date includes the motion due to precession-nutation together
with a fixed offset in orientation (of about 23 mas) between the
GCRS and J2000 dynamical frame, called the frame bias.

2 The CIO was originally called celestial ephemeris origin (CEO) in
the IAU 2000 Resolution B1.8, but is now renamed celestial interme-
diate origin (CIO) according to the recommendations of the NFA WG
for harmonization with the celestial intermediate pole (CIP).
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When directions in the terrestrial intermediate reference
frame (TIRS), or equivalently topocentric directions, are to be
computed, a measure of Earth rotation is also required, as well
as polar motion, which will not be discussed here. When re-
ferring right ascensions to the CIO, the appropriate angle is
the Earth rotation angle (ERA), a linear function of UT1. In
the equinox based case the corresponding angle is Greenwich
sidereal time (GST), which is a more complicated function of
both UT1 and terrestrial time TT, the latter to deal with part
of the precession-nutation effect. The difference between the
two angles is called the “equation of the origins” (EO) and is
defined as ERA−GST.

Predicting the CIP and CIO directions to precisions of
a few microarcseconds over several centuries can be done
in a number of ways. Methods based on the IAU 2000A
precession-nutation can be found in Capitaine et al. (2003a,b),
denoted C03a and C03b, respectively, in the following, in
the IERS Conventions (2003) and in the IAU SOFA soft-
ware (Wallace 2002). Methods based on the recent P03 pre-
cession model can be found in Capitaine et al. (2003c, 2005),
denoted C03c and C05. Similarly, various methods exist for
computing the bias-precession-nutation transformation (i.e. the
product, denoted NPB, of the bias, then precession, then nuta-
tion transformations) that either start from or contain implic-
itly the CIP and CIO. One method is to compute the classical
NPB rotation matrix (see Eq. (11)), the bottom row of which
is the unit vector of the CIP in the GCRS. Alternatively, direct
series for the GCRS X, Y coordinates of the CIP can be de-
rived from the theoretical expressions as functions of the clas-
sical precession-nutation angles, and from these coordinates
and a small angle s (see below) the rotation matrix can be
constructed. Another method is based on the “rotation vector”
concept, which was described in C03c for the bias-precession
components and is extended here also to include the nutation.

The classical NPB rotation matrix (see Eq. (11)) can be
generated directly from the precession angles and immedi-
ately delivers not only the CIP (the bottom row of the ma-
trix) but also the equinox (the top row), which is the RA ori-
gin in this case. However, this geometrical simplicity comes at
the cost of requiring an Earth rotation measure, namely GST,
that itself contains terms due to precession-nutation. Working
via the kinematically-defined CIO rather than the equinox
means that ERA can be used directly but makes construct-
ing the rotation matrix slightly more complicated given the
current conventional form of the nutation. The CIO position
can be obtained from the quantity s(t), called the “CIO loca-
tor”, which is the difference (of less than 0.1 arcsec through-
out the period 1900−2100) between the two R3 Euler angles
in the 3-1-3 sequence of rotations forming the rotation from
the GCRS to the CIRS. The computation of s implements the
basic kinematical property of the non-rotating origin (NRO,
Guinot 1979). Given the initial placement of the CIO3 and the
locus of the CIP pole as it moves in the GCRS, the value of s
can be expressed as an integral and the results developed in

3 The position of the CIO at epoch, about 0.1 mas from the GCRS
prime meridian, was a consequence of the canonical expressions for
ERA and GST (C03b).

series form for computational convenience. Other implemen-
tations of the NRO property are possible either analytically
or numerically and expressing positions with respect to dif-
ferent references (Fukushima 2001), such as the GCRS origin
axes (Kaplan 2003) or the true equinox (C03c; and Fukushima
2004).

The main purpose of this paper is to compare these vari-
ous ways of computing the positions of the CIP and CIO and
using them to form the transformation between celestial and
terrestrial coordinates. The precision goals are a few microarc-
seconds over a time span of a few hundred years (i.e. about
three orders of magnitude better than the expected accuracy
of the prediction), meeting the requirements of high-accuracy
applications.

All the numerical implementations in the paper will be
based upon the P03 precession model (C03c), which has re-
cently been recommended for adoption as the next IAU stan-
dard (Hilton et al. 2006), and the IAU 2000A nutation model,
with certain small modifications to the latter to make it conform
to the P03 precession.

We first, in Sect. 2, describe how to construct the GCRS
to CIRS transformation starting from the CIP direction and
the quantity s, or starting from the classical NPB matrix and
the EO. Then, in Sect. 3, we describe the methods for high-
precision positioning of the CIP, followed by accuracy con-
siderations. In Sect. 4 we go on to describe methods for high
precision positioning of the CIO, comparing their theoreti-
cal bases, noting the relationship to sidereal time and dis-
cussing the accuracy that can be achieved in practice. Finally,
in Sect. 5, we report numerical tests of various methods of
calculating the CIP and CIO directions and implementing the
GCRS to TIRS transformation, and we offer an assessment of
which precession-nutation expressions and matrix transforma-
tions achieve the required accuracy in the simplest and most
efficient way.

2. The GCRS-to-CIRS matrix

In this section we review several different ways of construct-
ing the rotation matrix that transforms GCRS vectors into
the CIRS. The two conventional methods start from (i) the
CIP coordinates X, Y and the CIO locator s and (ii) the clas-
sical equinox based NPB matrix and the equation of the ori-
gins, respectively. A third option is to use the “rotation-vector”
concept.

2.1. Method based on expressions for X, Y and s

The rotation matrix from the GCRS to the CIRS, defined by the
CIP and the CIO, can be written as:

MCIO = R3(−E − s) · R2(d) · R3(E), (1)

where s is the quantity locating the CIO in the GCRS
and d, E are the GCRS polar coordinates of the CIP defined by:

E = arctan(Y/X),
d = arcsin

[
(X2 + Y2)1/2

]
.

(2)
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This can be expressed, equivalently, as:

MCIO = R3(−s) ·MΣ, (3)

Σ being the point on the GCRS equator such that Σ0N = ΣN,
where Σ0 is the GCRS x-origin and N is the node of the
CIP equator on the GCRS equator, and:

MΣ = R3(−E) · R2(d) · R3(E)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 − aX2 −aXY −X
−aXY 1 − aY2 −Y

X Y 1 − a(X2 + Y2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (4)

with:

a = 1/(1 + cos d) = 1/(1 + Z) = 1/
[
1 + (1 − X2 − Y2)1/2

]
, (5)

which to an accuracy of 0.1 µas can be written as:

a =
1
2
+

1
8

(
X2 + Y2

)
+

1
16

(
X4 + Y4 + 2 X2Y2

)
. (6)

Trigonometrical developments for the CIP X and Y coordinates
as functions of time can be obtained in a variety of ways, set
out in Sect. 3. These can be used directly, or alternatively series
for X and Y can be produced, which are of the form:

X = X0 + X1 t + X2 t2 + X3 t3 + X4 t4 + X5 t5

+
∑

i

3∑
j=0

[
(as, j)it

j sin(ARG) + (ac, j)it
j cos(ARG)

]
+ · · · ,

(7)

Y = Y0 + Y1 t + Y2 t2 + Y3 t3 + Y4 t4 + Y5 t5

+
∑

i

3∑
j=0

[
(bc, j)it

j cos(ARG) + (bs, j)it
j sin(ARG)

]
+ · · ·

(8)

where ARG stands for various combinations of the fundamental
arguments of the nutation theory, including both luni-solar and
planetary terms.

The parameter t, used in the above expressions as well
as in those below, is the elapsed time in Julian centuries
since J2000 TT, defined by:

t = (TT − 2000 January 1d 12h TT)/36 525, (9)

with TT in days.
Note that, for practical reasons, the numerical expressions

for X and Y are usually multiplied by the factor 1 296 000′′/2π
in order to represent the approximate values in arcseconds of
the corresponding “angles” (strictly their sines) with respect to
the z-axis of the GCRS. Note also that the polynomial part of
the X and Y CIP coordinates originate from precession, except
for the contribution from the frame bias and from cross nutation
terms.

2.2. Method based on the classical equinox based
matrix

Although the ecliptic plays no part in defining either the GCRS
or the CIRS, it is nonetheless a basic component of current

precession theories. Furthermore, existing nutation theories
are based on the ecliptic and equinox of date. A precession-
nutation matrix formed by successive rotations using the mod-
eled angles contains not only the CIP but also the equinox.
Such a matrix, which we will call Mclass, rotates GCRS vec-
tors into true equator and equinox of date, requiring the use
of GST if TIRS coordinates or hour angles are to be com-
puted. Various formulations of Mclass are provided by Eq. (12),
Eqs. (14) and (15) in the following subsections.

In order to generate the GCRS to CIRS matrix, a supple-
mentary R3 rotation is required, to move the origin from the
equinox to the CIO. The angle is called the equation of the ori-
gins, and it is equal to ERA−GST:

MCIO = R3(−EO) ·Mclass. (10)

2.2.1. Matrix using separate bias, precession
and nutation angles

Using the usual notation, the classical form of the transforma-
tion from the GCRS to the CIP and equinox of date system,
based on the classical precession variables, can be written as:

Mclass = N · P · B, (11)

i.e. as the product of the individual rotation matrices B (bias)
followed by P (precession) and then N (nutation):

B = R1(−η0) · R2(ξ0) · R3(dα0),
P = R3(χA) · R1(−ωA) · R3(−ψA) · R1(ε0),
N = R1(−[εA + ∆ε]) · R3(−∆ψ) · R1(εA),

(12)

where ξ0 and η0 are the celestial pole offsets at J2000 and dα0

the offset in right ascension of the J2000 mean equatorial frame
with respect to the GCRS. The classical precession quanti-
ties ψA, ωA, εA and χA are those defined by Lieske et al. (1977),
the nutation quantities ∆ψ and ∆ε are the luni-solar and plane-
tary nutations and ε0 is the J2000 obliquity of the ecliptic.

Note that the precession matrix, P, can be formed in sev-
eral ways, depending on which of the precession angles are
used. The 4-rotation method given above was chosen for the
IERS/SOFA implementation of IAU 2000 because it enabled
the specified precession-rate adjustments to be applied directly
and unambiguously. In the case of the present work that is no
longer a consideration and other choices are open.

One particular formulation for P customarily used in the
past but no longer useful is:

P = R3(−zA) · R2(θA) · R3(−ζA). (13)

The Euler angles it uses, zA, θA and ζA, are further from the
basic P03 quantities for the equator ψA andωA used in Eq. (12),
and while the method would save one rotation the result would
still be much less concise than that described in Sect. 2.2.34.

4 Although a further three rotations can be saved by absorbing the
frame bias into the zA, θA and ζA angles, two of the resulting angles
undergo large changes near epoch that preclude any convenient poly-
nomial representation (see C03c).
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2.2.2. Matrix referred to the J2000 ecliptic

Alternatively, the NPB transformation can be expressed with
the nutation angles referred to the J2000 ecliptic:

M′
class = R3(χ′A) · R1(−ω′A) · R3(−ψ′A)

· R1(ε0 − η0) · R3(dα′0), (14)

where χ′A = χA + ∆χA is the displacement of the ecliptic along
the CIP equator, ψ′A = ψA + ∆ψ1 + ξ0/ sin ε0 is the precession-
nutation-bias along the J2000 ecliptic, ω′A = ωA + ∆ε1 is the
inclination of the CIP equator on the J2000 ecliptic and dα′0 =
dα0 + ξ0 cot ε0 is the GCRS right ascension of the intersection
of the J2000 ecliptic with the GCRS equator.

This extends the form of the precession-nutation proposed
by Aoki & Kinoshita (1983) by including the bias as well.

Note that the full benefits of this approach (i.e. referring the
precession-nutation quantities to a fixed plane) are obtained by
omitting the precession of the ecliptic (i.e. χ′A), which means
considering the transformation from GCRS to the system de-
fined by the CIP and the intersection γ1 of the CIP equator with
the J2000 ecliptic instead of the equinox of date.

2.2.3. Matrix using new precession-nutation angles

A new formulation has been proposed by Fukushima (2003) to
express the precession and nutation as concisely as possible,
using four rotations, by extending the notations proposed by
Williams (1994) to take account of the bias contribution. This
can be written as:

MFW = R1(−ε′) · R3(−ψ′) · R1(φ′) · R3(γ′), (15)

where ε′ = [εA + ∆ε] is the inclination of the ecliptic of date
on the CIP equator, ψ′ = [ψ + ∆ψ + ξ0/ sin ε0] the precession
plus nutation angle plus bias in longitude along the ecliptic
of date, φ′ = [φ + η0] is the obliquity of the ecliptic of date
on the GCRS equator and γ′ = [γ + dγ0] is the GCRS right
ascension of the intersection of the ecliptic of date with the
GCRS equator.

This method is similar to Eq. (14) but with quantities re-
ferred to the ecliptic of date instead of the ecliptic at J2000.
It obviously results in simpler relationships as the IAU 2000A
nutation series provides such quantities directly, but can be re-
garded as less satisfying from a theoretical point of view.

2.3. Method based on the “rotation vector” concept

Any finite rotation of the coordinate frame can be expressed as
the “Euler axis and angle”, which are, respectively, the unit vec-
tor along the axis of rotation and the amount of rotation. These
can be combined in various ways (see Goldstein 1980; Wertz
1986) of which a particularly straightforward three-component
option is simply to scale the Euler-axis unit vector by the
amount of rotation in radians. This “rotation vector” approach
was shown in C03c to be efficient for representing the bias-
precession because the precession approximates a constant ro-
tation about a fixed point (namely the ecliptic pole). We have
extended it to bias-precession-nutation and applied it both to
the equinox based and the CIO based transformation.

To express the vector (xr, yr, zr) as the rotation matrix Mrot,
we first decompose it into the amount of rotation in radians:

φ = (x2
r + y

2
r + z2

r )1/2 (16)

and the rotation-axis unit vector:

x = xr/φ, y = yr/φ, z = zr/φ. (17)

Then, writing S = sin φ, C = cosφ and f = 1 − C, we form
the matrix elements as follows:

Mrot �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

xx f + C xy f + S z xz f − S y
yx f − S z yy f + C yz f + S x
zx f + S y zy f − S x zz f + C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (18)

Note that the algorithm is computationally very efficient: only
one square root and two trigonometrical functions (of the same
angle) are required, in addition to arithmetic operations. Given
the date t in Julian centuries after J2000, Eqs. (16) to (18) can
be evaluated to generate the matrix transformation for bias, pre-
cession and nutation.

The product of this matrix with the GCRS vector gives ei-
ther the true place of date or the intermediate place, depending
on the chosen x-origin (i.e. either the equinox or the CIO).

2.4. Relationship between the methods

2.4.1. CIP, CIO and equinox from matrix elements

Recalling that GCRS vectors rGCRS can be transformed into
CIRS vectors rCIRS as follows:

rCIRS =MCIO · rGCRS, (19)

we can write the matrix in terms of unit row vectors u:

MCIO ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
uCIO

uCIP × uCIO

uCIP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (20)

This identifies the top row of the GCRS to CIRS matrix as the
CIO vector, the bottom row as the CIP vector and the middle
row as the CIRS y-axis. The equivalent expressions in the clas-
sical case are:

rtrue =Mclass · rGCRS, (21)

and:

Mclass ≡
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
ueqx

uCIP × ueqx

uCIP

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , (22)

where the top row (ueqx) is the unit vector pointing to the
equinox of date.

In particular, note that in both cases the bottom row is the
CIP vector, leading to the useful identities:

X = M(3, 1),

Y = M(3, 2). (23)
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2.4.2. The matrix elements as functions of CIP X , Y

Referring to Eqs. (3), (4) and (10), we recognize that any of
the different forms of the matrix transformations, correspond-
ing to various origins on the CIP equator, can be written out in
a similar way:

Mβ = R3(−β) ·MΣ, (24)

where MΣ is given by Eq. (4) and β is the rotation angle
from Σ to the origin of the selected intermediate origin on the
CIP equator, so that:

β = 0 for the origin Σ,
β = s for the CIO based matrix and
β = −EO + s for the equinox based matrix.

The M(i, j) elements of the matrix transformation Mβ as func-
tions of the X, Y coordinates and the β angle can be derived
from Eqs. (4) and (24) as follows:

M(1, 1) = (1 − aX2) cos β + aXY sin β,

M(1, 2) = −aXY cos β − sin β(1 − aY2),

M(1, 3) = − cos βX + sin βY,

M(2, 1) = (1 − aX2) sin β − aXY cos β,

M(2, 2) = −aXY sin β + cos β(1 − aY2),

M(2, 3) = − sin βX − cos βY,

M(3, 1) = X,

M(3, 2) = Y,

M(3, 3) = 1 − a(X2 + Y2). (25)

These expressions underline the fact that locating the pole and
the origin of right ascension are essentially different topics, and
we deal with each of them in Sects. 3 and 4 respectively.

2.4.3. The rotation vector components expressed
as functions of the other quantities

In Eq. (18), we expanded the r-vector representation of the
GCRS to CIRS transformation into the nine elements of the
NPB matrix Mrot. Elements (3, 1) and (3, 2) provide the fol-
lowing expressions for the GCRS CIP coordinates X and Y as
functions of the components of the rotation-axis unit vector, x,
y, z, and the amount of rotation φ around the Euler axis:

X = M(3, 1) = zx(1 − cosφ) + sin φ y,

Y = M(3, 2) = zy(1 − cosφ) − sin φ x. (26)

Conversely, the components of the rotation-axis unit vector,
x, y, z, can be derived from the differences between the ele-
ments of the GCRS-to-intermediate-system transformation ma-
trix, which are such that:

M(3, 1) −M(1, 3) = 2S y,

M(3, 2) −M(2, 3) = −2S x,

M(2, 1) −M(1, 2) = −2S z. (27)

The expressions for x, y, z as functions of X, Y and the gener-
alized rotation angle β are:

S x = −Y − 1
2

[(cosβ − 1)Y + sin βX],

S y = X +
1
2

[(cosβ − 1)X − sin βY],

S z = (1 − 1
2

a(X2 + Y2)] sin β. (28)

The rotation vector components xr, yr, zr can then be derived
from the previous expressions by using the relations

xr = (φ/ sinφ) S x,

yr = (φ/ sinφ) S y,

zr = (φ/ sinφ) S z, (29)

the expression φ/ sinφ being obtained from the matrix
elements:

φ/ sinφ = 1 +
1
6

S 2 +
3

40
S 2

2 +
169

5040
S 3

2 (30)

with:

S 2 =
1
4

(
[M(3, 1) −M(1, 3)]2 + [M(3, 2) −M(2, 3)]2

+ [M(2, 1) −M(1, 2)]2
)

= S 2(x2 + y2 + z2) = sin2 φ. (31)

This applies (i) to the CIO based case with β = s and (ii) to the
equinox based case with β = −EO + s. As β is a small angle
and S 2 a quantity of the order of 10−4, we have:

xr � −Y − 1
2
βX

yr � X − 1
2
βY

zr � β, (32)

which shows that the rotation-vector components xr, yr, zr are
close to −Y, X, β.

3. The position of the CIP

Three methods of generating the CIP coordinates will be exam-
ined, one as used for the published X, Y series and two based
on different choices of precession and nutation angles.

3.1. Method used for the IERS X, Y series

IERS Conventions (2003) present direct series for X and Y,
providing convenient access to accurate predictions while min-
imizing the number of opportunities for incomplete or incor-
rect implementation. The starting point for developing these
series is to write the position of the CIP directly as the compo-
nents X(t) = sin d cos E, Y(t) = sin d sin E of the unit vector in
the GCRS, d and E being the GCRS polar coordinates of the
CIP and Z = cos d.
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The expressions for the precession-nutation contributions X̄
and Ȳ to X and Y as functions of the precession and nutation
quantities, ψ = ψA + ∆ψ1 and ω = ωA + ∆ε1, referred to the
J2000 ecliptic are:

X̄ = sinω sinψ,

Ȳ = − sin ε0 cosω + cos ε0 sinω cosψ, (33)

X, Y being related to X̄, Ȳ by:

X = X̄ + ξ0 − dα0 Ȳ,

Y = Ȳ + η0 + dα0 X̄, (34)

where ξ0 and η0 are the celestial pole offsets at J2000 and dα0

the offset in right ascension of the J2000 mean equatorial
frame with respect to the GCRS. Semi-analytical expressions
for the quantities X and Y have been developed in C03a
and C03c, using Eqs. (33) and (34), that are consistent with the
IAU 2000A nutation series and the IAU 2000A and P03 pre-
cession solutions respectively. These expressions are based
on the MHB2000 values (Mathews et al. 2002) for the ce-
lestial pole offsets at J2000 (i.e. ξ0 = −16.617 mas and
η0 = −6.819 mas) and on the value of Chapront et al. (2002)
for dα0 (i.e. −14.6 mas).

To transform the nutation angles ∆ψ and ∆ε referred to the
ecliptic of date to angles∆ψ1, ∆ε1 referred to the J2000 ecliptic,
the following relations were used:

∆ψ1 sin ε1 = ∆ψ sin ε cosχA − ∆ε sinχA,

∆ε1 = ∆ε cosχA + ∆ψ sin ε sinχA. (35)

The classical precession quantities ψA, ωA, εA and χA are those
defined by Lieske et al. (1977) (ψA, ωA being the basic P03
quantities for the precession of the equator) and the nutation
quantities ∆ψ and ∆ε are the luni-solar and planetary nutations.

3.2. Methods using the equinox based matrix
elements

3.2.1. Method based on the Mclass form
of the NPB matrix

Elements (3, 1) and (3, 2) of the form Mclass of the NPB ma-
trix (cf. Eq. (11)) provide expressions for the GCRS CIP co-
ordinates X, Y as functions of the classical precession quan-
tities, ψA, ωA and χA, nutation quantities ∆ψ and ∆ε, the
J2000 obliquity of the ecliptic ε0 and the frame biases ξ0,
η0 and dα0. Omitting the frame biases for simplification and
using the intermediary quantities x1 = sin(εA + ∆ε) sin∆ψ,
x2 = sin(εA + ∆ε) cos∆ψ and y = cos(εA + ∆ε) leads to the
following expressions:

X = M(3, 1)

= x1(cosχA cosψA + sinχA cosωA sinψA)

+ (x2 cos εA − y sin εA)

× (− sinχA cosψA + cosχA cosωA sinψA)

+ (x2 sin εA + y cos εA) sinωA sinψA

Y = M(3, 2)

= x1[(− cosχA sinψA + sin χA cosωA cosψA) cos ε0

+ sin χA sinωA sin ε0]

+ (x2 cos εA − y sin εA)

× [(sinχA sinψA + cosχA cosωA cosψA) cos ε0

+ cosχA sinωA sin ε0] + (x2 sin εA + y cos εA)

× (sinωA cosψA cos ε0 − cosωA sin ε0). (36)

This way of expressing the CIP position is not straightforward,
even in the simplified case where the frame biases are omitted,
due to the fact that it mixes precession quantities referred to the
J2000 ecliptic and nutation quantities referred to the ecliptic of
date. The advantage is that the precession quantities are the
basic P03 quantities and the nutation quantities are the basic
IAU 2000A ones.

A simpler form can be developed using nutation quanti-
ties referred to the J2000 ecliptic. The X, Y expressions derived
from the M′

class form of the NPB matrix are:

X = M(3, 1)

= sinω′A sinψ′A cos dα′0 − [sinω′A cosψ′A cos(ε0 − η0)

− cosω′A sin(ε0 − η0)] sin dα′0,
Y = M(3, 2)

= sinω′A sinψ′A sin dα′0 + [sinω′A cosψ′A cos(ε0 − η0)

− cosω′A sin(ε0 − η0)] cos dα′0. (37)

with the same notations as in Sect. 2.2.2. Note that even though
Eq. (37) is much simpler than Eq. (36), this is not the sim-
plest way of expressing the CIP position given the form of the
current IAU nutation series, which are referred to the ecliptic
of date. The nutation quantities referred to the J2000 ecliptic
should instead be deduced from the IAU nutation (e.g. through
Eq. (35)). However, the precession quantities used in this ex-
pression are the P03 basic quantities and, from a theoretical
standpoint, quantities referred to a fixed ecliptic are more com-
pliant with the use of the GCRS; new solutions for nutation
may be provided in this form, making the above relationship
interesting for future applications.

3.2.2. Method based on the MFW form
of the NPB matrix

As before, elements (3, 1) and (3, 2) of the form MFW

(cf. Eq. (15)) of the NPB matrix provide expressions for the
GCRS CIP coordinates X, Y as functions of the new precession-
nutation-bias quantities referred to the ecliptic of date and of
the J2000 obliquity of the ecliptic ε0.

These can be written as (Fukushima 2003):

X = M(3, 1)

= sin ε′ sinψ′ cos γ′ − (sin ε′ cosψ′ cosφ′

− cos ε′ sin φ′) sin γ′,
Y = M(3, 2)

= sin ε′ sinψ′ sin γ′ + (sin ε′ cosψ′ cosφ′

− cos ε′ sin φ′) cosγ′. (38)
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These expressions are similar to Eq. (37) but with the
precession-nutation angles being referred to the ecliptic of date
instead of the J2000 ecliptic. This is an advantage as these an-
gles are the quantities directly provided by the IAU 2000A nu-
tation series. However, this can be regarded as less satisfying
from a theoretical point of view and therefore may not suit fu-
ture applications. Another possible objection is that the preces-
sion quantities used are not the basic P03 precession quantities
but are derived quantities.

3.3. Relationships between the methods

Any form of the GCRS CIP coordinates X, Y obtained in
the previous sections are functions of the precession-nutation-
bias quantities, which are time polynomials, Poisson series,
and constant terms, respectively. Three different expressions,
namely Eq. (34) of Sect. 3.1, Eq. (37) of Sect. 3.2.1 and
Eq. (38) of Sect. 3.2.2 have been developed into series by us-
ing the software package GREGOIRE (Chapront 2003), which
carries out Poisson series manipulations (for further details,
see C03a). Those expressions differ in the way the bias and
precession-nutation contributions are treated, the consequences
of which on the CIP location are studied in the following
sections.

3.3.1. Differences in the bias contribution

The bias contribution is interpreted in different ways in the
method used for the X, Y series in Sect. 3.1 and the method
using the elements of the NPB matrix in Sect. 2.2.1.

In the Sect. 3.1 X, Y series, the celestial pole offsets ξ0

and η0 have been interpreted simply as constant terms added
to the precession-nutation expressions, X̄ and Ȳ .

The contributions dXbias and dYbias for the IAU 2000 frame
biases to the Sect. 3.1 X, Y series are, in µas:

dXbias = −16617 − 1.6 t2 + 1 cosΩ,

dYbias = −6819 − 142 t + 1 sinΩ, (39)

the first term in each coordinate being the contribution from the
celestial pole offset at J2000 and the two following ones from
the frame bias in right ascension.

It can be shown that if the celestial pole offsets, ξ0

and η0, are interpreted simply as constant terms added to
the precession-nutation expressions, X̄ and Ȳ, this differs
from applying them through a frame bias rotation matrix,
by −0.78 µas t2 in X and −0.33 µas t2 in Y.

These differences are seen when comparing the X, Y series
Eqs. (48) and (49) with respect to series based on Eqs. (37)
or (38) for elements M(3, 1) and M(3, 2) of the NPB matrix.

3.3.2. Differences in the precession-nutation
contribution

There are differences in the way precession-nutation is con-
sidered in the various methods described in Sects. 3.1, 3.2.1
and 3.2.2. For precession, either expressions for the basic P03
quantities ψA and ωA, plus the quantity χA in the case of

Eq. (35), are used (in the methods of Sects. 3.1 and 3.2.1), or
the result of applying the P03 precession to the F-W angles (in
the method of Sect. 3.2.2). This result was derived in a semi-
analytical way, by solving to microarcsecond accuracy the
P03 expressions for the F-W angles, using spherical-triangle
formulas and the developments for the basic P03 angles.

The nutation quantities are considered either as nutation an-
gles referred to the ecliptic of date (first method of Sect. 3.2.1
and the method of Sect. 3.2.2), or are transformed into nutation
angles referred to the J2000 ecliptic (method of Sect. 3.1 and
the second method of Sect. 3.2.1).

Transforming the nutation angles from the ecliptic of date
to the J2000 ecliptic by using Eq. (35) is not totally rigorous,
involving approximations at a submicroarcsecond level. Other
approximations at the same level were also used in the semi-
analytical developments of the precession-nutation quantities
performed in Sect. 3.1.

Those approximations can be assessed by comparing the
Sect. 3.1 X, Y series with respect to series of the (3, 1)
and (3, 2) elements of the NPB matrix based on the nuta-
tion angles referred to the ecliptic of date, for example using
Eq. (38). The largest differences (in addition to those men-
tioned in Sect. 3.3.1) that are seen in this comparison are
of 0.22 µas t sin 2Ω in X and −0.12 µas t in Y, which result
from the approximations of Eq. (35).

3.4. Accuracy considerations

3.4.1. Dependence on the parameters
of the precession model

The GCRS X, Y coordinates of the CIP and, similarly, the clas-
sical precession-nutation quantities, are functions of the param-
eters that were used to develop the precession model. Both de-
pend on the integration constants (i.e. the linear terms X1 and Y1

for the X, Y case, the precession rates in the classical case) and
the value for the secular variation of the Earth’s dynamical flat-
tening (or equivalently the secular variation of J2), one of the
precession model parameters due to non-rigidity.

In the case of the expressions for the GCRS coordinates of
the CIP, irrespective of how they are computed, adjustments to
the above parameters of the precession model and additionally
to the frame bias components ξ0, η0 and dα0 cause changes in X
and Y as follows:

dX = dξ0 + dX1 t

+0.0001 d(dα0) t2 + 0.0203dY1 t2

+(J̇2/J2) × (1002.′′5 t2 − 0.′′4 t3),

dY = dη0 + X1 d(dα0) t + dY1 t

−0.0224 dX1 t2 − (J̇2/J2) × (22.′′5 t3). (40)

In particular, the change from the IAU 2000 precession solu-
tion to the P03 solution gives rise to changes in the polynomial
terms in the X and Y series of, in µas:

dX = 155 t − 2564 t2 + 2 t3 + 54 t4,

dY = −514 t − 4 t2 + 58 t3 − 1 t4 − 1 t5, (41)
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the t4 and t5 terms being absent from the IAU 1976/2000
precession. There are also changes of the order of a few
µas per century in a few terms of the periodic part of the ex-
pressions for the CIP X, Y due to the J2 rate effect which is
taken into account in the P03 precession model whereas it was
not considered in the IAU 2000 model. The additional Poisson
terms to be considered are proportional to J̇2/J2. These terms,
derived from the corresponding terms in longitude and obliq-
uity provided in C05, are, as functions of J̇2/J2, in arcseconds:

dXJ2d = (J̇2/J2) t [−6.8 sinΩ − 5.2 sin 2(F − D + Ω)

−0.1 sin 2(F + Ω) + 0.1 sin 2Ω],

dYJ2d = (J̇2/J2) t [9.2 cosΩ + 0.6 cos 2(F − D + Ω)]. (42)

The J2 rate contribution to the linear precession rate in
longitude, which in the P03 precession was considered to
be −14 t mas, corresponds to a value for J̇2/J2 of −2.7774 ×
10−6/cy, or equivalently (with J2 = 1.0826358 × 10−3) to a
value for J̇2 of −0.3001 × 10−9/cy.

In the case of the classical precession-nutation quantities,
adjustments dr0 and du0 to the precession rates in longitude and
obliquity and the introduction of a J2 rate contribution cause
changes in the basic precession quantities ψA and ωA of:

dψA = dr0 t − 0.0053 du0 t2

+(J̇2/J2) × (2520.′′4 t2 − 0.′′9 t3)

dωA = du0 t. (43)

Two different corrections in nutation have to be considered
when changing from the IAU 2000 precession solution to the
P03 solution.

It is first necessary to take into account the additional
Poisson terms, proportional to J̇2/J2, which have already been
mentioned in the X, Y case and which affect the nutation am-
plitudes in both longitude and obliquity. The corrections larger
than 1 µas to be added to the IAU 2000A nutation for this effect
are, in µas:

dψJ2d = + 47.8 t sinΩ + 3.7 t sin 2(F − D + Ω)

+0.6 t sin 2(F + Ω) − 0.6 t sin 2Ω,

dεJ2d = −25.6 t cosΩ − 1.6 t cos 2(F − D + Ω), (44)

which can also be written as functions of ∆ψIAU2000

and ∆εIAU2000, the IAU 2000A nutation angles in longitude and
obliquity respectively:

dψJ2d = (J̇2/J2) t∆ψIAU2000,

dεJ2d = (J̇2/J2) t∆εIAU2000. (45)

The second effect, which does not exist in the the X, Y case,
results from the fact that the P03 obliquity is different from
the IAU 1980 obliquity that was used when estimating the
IAU 2000A nutation amplitudes. To compensate for this
change, it is necessary to multiply the amplitudes of the nu-
tation in longitude by sin εIAU2000/ sin εP03 = 1.000000470.

The correction for terms larger than 1 µas to be added to
the IAU 2000A nutation in longitude for this effect is, in µas:

dεψ = −8.1 sinΩ − 0.6 sin 2(F − D + Ω), (46)

which can also be written as functions of ∆ψIAU2000 and
∆εIAU2000, the IAU 2000A nutation angles in longitude and
obliquity respectively:

d1ψ = [(sin εIAU2000/ sin εP03) − 1] ∆ψIAU2000. (47)

The accuracy in the CIP location is limited by the uncertainties
in the parameters of the precession model appearing in Eq. (40)
(i.e. the frame biases, precession rates and J2 rate value) and of
the nutation amplitudes. Realistic uncertainties for those pa-
rameters are (according to C05) of the order of 150 µas for
the frame biases, 150 µas/cy for the linear term in X and Y (or
equivalently 400 µas/cy and 150 µas/cy for the precession rates
in longitude and obliquity, respectively) and 2 mas/cy2 for the
J2 rate; according to Mathews et al. (2002), there is an uncer-
tainty of the order of 50 µas in the amplitude of the largest
nutation term (i.e. the 18.6-yr term) and the free core nutation
is not part of the IAU 2000A nutation model. The accuracy that
can really be achieved for predicting the CIP location is there-
fore of the order of 2 mas after one century, even though the
model itself, for any given values of the precession-nutation
parameters, is of microarcsecond precision.

3.4.2. Dependence on the choice of method

The differences between the various methods for computing the
position of the CIP are, as described in Sects. 3.3.1 and 3.3.2, in
the way (i) the bias contribution and (ii) the precession-nutation
contribution are treated. The comparison of the semi-analytical
expressions obtained for X, Y by three different methods agree
to better than 1 µas after one century, which shows that the
predicted discrepancies in the computed CIP position resulting
from the choice of the method are below 1 µas after a century.
These comparisons are based upon the P03 precession model
and the IAU 2000A nutation model (including frame biases)
with the slight modifications for conformity with the P03 pre-
cession that were described earlier.

The P03 series developments for X and Y described in C03c
were obtained by using the Sect. 3.1 method. They are provided
in the form of Eqs. (7) and (8), the polynomial parts of which
can be written as:

XP03(polyn) = − 0.′′016617+ 2004.′′191898 t − 0.′′4297829 t2

− 0.′′19861834 t3 + 0.′′000007578 t4

(48)

YP03(polyn) = − 0.′′006951− 0.′′025896 t − 22.′′4072747 t2

+ 0.′′00190059 t3 + 0.′′001112526 t4

+ 0.′′0000001358 t5. (49)

The polynomial parts of the P03 series developments
for X, Y derived from (3.2.2) can be written as:

X′P03(polyn) = − 0.′′016617+ 2004.′′191898 t − 0.′′4297821 t2

− 0.′′19861834 t3 + 0.′′000007578 t4

(50)

Y′P03(polyn) = − 0.′′006951− 0.′′025896 t − 22.′′4072744 t2

+ 0.′′00190059 t3 + 0.′′001112526 t4

+ 0.′′0000001358 t5. (51)
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As already mentioned in Sect. 2.1, the polynomial parts of the
X, Y series originate from precession, except for the contribu-
tion from the frame bias (see Sect. 3.3.1) and from cross nuta-
tion terms. The latter contribute as a constant term in YP03 (both
Eqs. (49) and (51)) of 132 µas and a secular term in XP03 (both
Eqs. (48) and (50)) of 4 µas per century.

3.4.3. Application to pre-2003 VLBI EOP time series

The identification between rotation matrix components and
the CIP (Eq. (23)) suggests a convenient way of transform-
ing existing VLBI Earth orientation parameter (EOP) time se-
ries to refer to the new precession-nutation models. Included
in the EOP time series are the observed coordinates of the
pole, expressed as “nutation offsets”, corrections δψ, δε with
respect to the IAU 1976/1980 precession-nutation models.
In 2003, the reference model was changed to IAU 2000A,
as set out in IERS Conventions (2003), with the observed
pole offsets presented not as nutation components but in-
stead directly as corrections δX, δY to the pole vector. When
comparing EOP records from before 2003 with more recent
results, it is necessary to transform the tabulated nutation off-
sets δψ1980, δε1980 into the corresponding (and much smaller)
δX2000, δY2000.

The nutation offsets encompass both the unpredictable
variations in Earth attitude that arise from geophysical causes
but also the shortcomings of the IAU 1976/80 precession-
nutation models. The latter, in addition to a multitude of
comparatively small periodic terms, contain large fixed and
secular components arising from frame bias and precession-
rate errors respectively. In C03a it was shown that the pre-2003
practice of applying the frame bias and precession corrections
as if they were nutation, i.e. applying them with respect to the
mean equator and equinox of date rather than with respect to
the GCRS and mean equator and equinox of J2000, respec-
tively, introduced cross terms of significant size, of the order
of 1 mas after 1 century. It is important that this is correctly
handled in the δψ, δε to δX, δY transformation. This can be
done by exploiting Eq. (23) to extract the CIP X, Y from the
IAU 1976/80-based rotation matrix and then to compare it with
the CIP obtained by the current reference model, IAU 2000A.

The procedure is as follows:

1. Evaluate the IAU 1980 nutation components of date,
∆ψ1980,∆ε1980.

2. Add the EOP values δψ, δε to give the VLBI-observed
nutation with respect to the IAU 1976 precession,
(∆ψobs,∆εobs)1976.

3. Compute the IAU 1980 obliquity of date.
4. Using the results from steps 2 and 3, form the observed

nutation matrix.
5. Compute the IAU 1976 precession matrix.
6. Combine the matrices from steps 4 and 5 to form the ob-

served NPB matrix Mobs; elements (3, 1) and (3, 2) of this
matrix are the GCRS X, Y coordinates of the observed CIP.

7. Compute the IAU 2000A NPB matrix M2000A; ele-
ments (3, 1) and (3, 2) are the GCRS X, Y coordinates of
the IAU 2000A CIP.

8. Difference the two CIPs from steps 6 and 7 to give the ob-
served corrections to the IAU 2000A precession-nutation:

δX2000A = Mobs(3, 1) −M2000A(3, 1),

δY2000A = Mobs(3, 2) −M2000A(3, 2). (52)

Equation (52) is a rigorous procedure for transforming exist-
ing VLBI nutation offsets with respect to the IAU 1976−1980
precession-nutation into corrections to the IAU 2000A
CIP GCRS X, Y coordinates. Whereas simpler formulations ex-
ist for transforming nutation offsets using pre-2003 practices
(e.g. Vondrák et al. 2003), locating the CIP in the GCRS to mi-
croarcsecond accuracy requires a rigorous procedure such as
that just described.

4. The position of the CIO

Here we compare different possible ways of computing the
GCRS position of the celestial intermediate origin.

The expressions for the various quantities have been devel-
oped into series by using the software package GREGOIRE. The
polynomial parts of these series are provided in the following
sections, and the number of periodic terms are listed in Tables 1
and 2. The complete series are available as tables in electronic
form (see Appendix A). The various significant points on the
CIP equator, and their relationship to the Earth rotation angle
and the equation of the origins, are shown in Fig. 1.

4.1. Method using the CIO locator s

The GCRS position of the CIO derived from the kinematical
definition of the CIO depends on an integral that involves the
motion of the CIP.

Table 1. Comparison between various series positioning the CIO,
0.1µas resolution.

Quantity Number of periodic terms in

t0 t t2 t3 t4

s 24 125 21 2

s + XY/2 33 3 25 4 1

s + XY/2 + D 33 3 1 1

EO +∆ψ cos εA 33 1

yCIO 33 3 25 4 1

Table 2. Size of the xCIO, yCIO, zCIO series of periodic terms. See
Sect. 4.3.

Coordinate t0 t t2 t3 t4

x 27 196 28 5 1

y 33 3 25 4 1

z 1306 254 36 4 1
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Fig. 1. The relationship between the CIO, the equinox and other significant points: Σ0 is the GCRS origin, M is the ascending node of the
CIP equator on the GCRS equator, Σ is the point on the CIP equator such that Σ̂M = Σ̂0 M, γ0 is the J2000 equinox, γ is the equinox of date
and γ1 is the ascending node of the J2000 ecliptic on the CIP equator. K and H are the intersections of the GCRS meridian and the CIP meridian
coming through Σ0, respectively with the CIP equator. � is the TIO, ERA = σ̂� is the Earth rotation angle (ERA) and EO = σ̂γ is the equation
of the origins.

The expression for the quantity s, called the “CIO locator”,
as a function of the CIP coordinates X, Y, Z, is:

s(t) =
∫ t

t0

[X(t)Ẏ(t) − Ẋ(t)Y(t)]
1 + Z

dt −C0, (53)

The expression for s can be obtained either directly by com-
puting the above integral, or through the computation of other
quantities that can be expressed in fewer terms.

4.1.1. Direct computation of s

Equation (53) was used by Capitaine et al. (1986) to provide a
semi-analytical expression consistent with the IAU1977/1980
precession-nutation model, including a polynomial in t and a
trigonometric part depending on the literal fundamental argu-
ments of nutation, that allows the GCRS position of the CIO to
be predicted directly as a function of time.

The semi-analytical expression for s has the following
form:

s(t) = C0 − X0Y0/2 +
∑

i

sit
i

+
∑

k

[
(Cs,0)k sinαk + (Cc,0)k cosαk

]
+
∑
k, j

[
(Cs, j)k sinαk + (Cc, j)k cosαk

]
t j. (54)

The computation of Eq. (53) based on the P03/IAU-2000A-
based expressions for the coordinates X and Y as functions of
time produced the following expression for the polynomial part
of s with a cut-off of 0.1 µas:

sP03 = 94.0 + 3825.39t + 1.21t2

+ 36287.09t3 − 4.61t4 − 0.57t5. (55)

The periodic part of this P03 / IAU 2000 expression for s with
a cut-off of 0.1 µas includes 24 Fourier terms and 125, 21

Fig. 2. Three different quantities from which s can be obtained,
thereby locating the CIO. The solid line is s itself. The function
s + XY/2 (dashed line) eliminates most of the nutation and hence
reduces the number of terms needed in a series representation. The
function s + XY/2 + D (the almost horizontal dotted line) is smoother
still. A fourth quantity that can be used to locate the CIO is the equa-
tion of the origins (EO: see Sect. 4.2). The EO is not shown because
it is dominated by precession in right ascension and hence changes by
over 5◦ in the 400-year interval depicted.

and 2 Poisson terms of degree 1, 2 and 3, respectively (see
Table 1).

The quantity s is the solid line in Fig. 2.

4.1.2. Expression for the quantity s + XY /2

For recent models (see for example C03b and IERS
Conventions 2003), the numerical development used to deter-
mine the GCRS position of the CIO gives not s itself but instead
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the quantity s + XY/2, which requires fewer terms to reach the
same accuracy.

This quantity is defined by:

s +
XY
2
=

∫ t

t0

˙X(t)Y(t) dt −C0 + δs, (56)

where δs is such that:

δs = −
t∫

t0

(2a − 1)
XẎ − YẊ

2
dt, (57)

a being given by (5).
Equation (56) provides an expression for s which is rigor-

ously equivalent to Eq. (53) and δs is a small quantity of the
order of 1 µas after a century.

The expression for s + XY/2 has the following form:

s(t) + XY/2 = C0 +
∑

i

sit
i

+
∑

k

[
(Cs,0)k sinαk + (Cc,0)k cosαk

]
+
∑
k, j

[
(Cs, j)k sinαk + (Cc, j)k cosαk

]
t j, (58)

the numerical value for C0 being fixed by the condi-
tion that UT1 be continuous through the transition on
2003 January 1.0 from the classical procedure based on the
previous definition of UT1 to the new procedure based on the
IAU 2000 definition.

The computation based on the P03/IAU-2000A-based ex-
pressions for the coordinates X and Y as functions of time
produced the following expression for the polynomial part
of s + XY/2, using a cut-off of 0.1 µas (C03b):

(s + XY/2)P03 = 94.0 + 3808.65t − 122.68t2

−72574.11t3 + 27.98t4 + 15.62t5. (59)

The series development for the contribution of Eqs. (57)
to (59) is:

0.5t5 + 0.1t3 − 0.1t2 − 1.1t3 cosΩ − 0.1t3 cos 2 � −0.1t2 sinΩ.

The periodic part of s + XY/2, again with a cut-off of 0.1 µas,
includes 33 Fourier terms and 3, 25, 2 and 1 Poisson terms of
degree 1, 2, 3 and 4, respectively (see Table 1).

The function s+XY/2 is the dashed line in Fig. 2. Compared
with s itself, it shows greatly reduced nutation effects and is
accordingly simpler to model to a given precision.

4.1.3. Expression for the quantity s + XY /2 + D
While the expressions for the quantities s and s + XY/2 in-
clude non-negligible t3 terms plus a number of Poisson terms
of degree 2, no such terms are present in the expression for
the quantity EO + ∆ψ cos εA (cf. Sect. 4.2). This indicates that
these terms can be eliminated when locating the CIO with re-
spect to an appropriate reference point on the CIP equator. We
have therefore looked for a quantity from which s can be ob-
tained as conveniently as it can from s+XY/2 but which has as
concise a model as that for the EO.

The following expression has been tried, based on theoret-
ical reasons that will be explained in Sect. 4.7.1:

s + XY/2 + D = s + XY/2 − Y2 t2[(X1/3) t + Xnut], (60)

where X1 and Y2 are the linear and the quadratic terms in the
polynomial part of X and Y in Eqs. (7) and (8), respectively
and Xnut is the periodic part of the X expression.

The computation based on the P03/IAU-2000A-based ex-
pressions for the coordinates X and Y as functions of time
produced the following expression for the polynomial part of
s + XY/2 + D, with a cut-off of 0.1 µas:

(s + XY/2 + D)P03 = 94.0 + 3808.65t − 122.68t2

+27.98t4 + 15.62t5. (61)

The periodic part, with a cut-off of 0.1 µas, includes 33 Fourier
terms and 3, 1 and 1 Poisson terms of degree 1, 2 and 3, respec-
tively (see Table 1).

The function s + XY/2 + D is the dotted line in Fig. 2.

4.2. Method using the “equation of the origins”
Greenwich sidereal time at date t (GST, or θ) is related to ERA
by subtracting the “equation of the origins”, denoted EO (i.e.
GST= θ − EO). In other words, the EO is the CIO right as-
cension, or equivalently the “intermediate right ascension”
of the equinox (according to the NFA IAU Working Group
Recommendations on terminology; see Capitaine et al. 2006):
EO is the angular distance between the CIO and the equinox
along the CIP equator, reckoned westwards from the CIO. The
EO’s role as the link between the classical and CIO based meth-
ods is illustrated by the following expressions for the GCRS-
to-TIRS rotation matrix R:

R(TT,UT) = R3(ERA) ·MCIO

= R3(ERA) · R3(−EO) ·Mclass

= R3(GST) ·Mclass. (62)

The three options correspond to (i) generating the CIO based
GCRS to CIRS matrix directly, ready to be used in conjunction
with the Earth rotation angle; (ii) using the EO to transform the
classical matrix into the CIO based matrix; and (iii) using the
EO to convert ERA to GST.

The theoretical expression for GST= Υ̂� as a function of
time is the following (cf. C03b):

GST = θ +
∫ t

0
˙̂(ψA + ∆ψ1) cos(ωA + ∆ε1)dt − (χA + ∆χA),

(63)

where ψA and ωA are the precession quantities in longitude and
obliquity referred to the J2000 ecliptic, ∆ψ1 and ∆ε1 are the
nutation quantities referred to the J2000 ecliptic and the quan-
tity χA + ∆χA is the distance along the CIP equator between
the equinox Υ and the intersection Υ1 of the J2000 ecliptic
(i.e. it is the accumulated precession of the ecliptic along the
CIP equator).

The development for GST includes a polynomial in t
(i.e. Greenwich mean sidereal time, GMST), plus the “com-
plete equation of the equinoxes” that includes the classical
“equation of the equinoxes”, ∆ψ cos εA, plus a complementary
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part, denoted dEE, that comes from the coupling between pre-
cession and nutation.

The expression for the quantity EO can be derived from
Eq. (63). Using the relationship:

∆χA = −∆ψ cos εA + ∆ψ1 cosωA + · · · , (64)

which corresponds to approximation at the level of 0.05 µas/cy,
EO can be written as (see Aoki & Kinoshita 1983; Capitaine &
Gontier 1993; and C03b):

EO = θ − GST = −
∫ t

0

˙̂(ψA + ∆ψ1) cos(ωA + ∆ε1)dt

+ χA − ∆ψ cos εA + ∆ψ1 cosωA, (65)

or equivalently:

EO = −
∫ t

0
ψ̇A cosωA dt + χA − ∆ψ cos εA

− dEEs − dEEp, (66)

where dEEs and dEEp are the periodic and secular compo-
nents of the “complementary part”, dEE, of the equation of
the equinoxes, which can be written at the µas level (see Aoki
& Kinoshita 1983; and C03b), using the same notations as
in Eq. (63):

dEEs =

[∫ t

0

˙̂
∆ψ1 ∆ε1 sinωA dt

]
s

+
1
2

[∫ t

0
ψ̇A∆ε

2
1 cosωAdt

]
s

, (67)

dEEp = +

∫ t

0
ψ̇A sinωA∆ε1 dt

+

∫ t

0

˙̂
∆ψ1(ωA − ε0) sinωA dt

+

∫ t

0

[
˙̂
∆ψ1∆ε1 sinωA dt

]
p

+
1
2

[∫ t

0
ψ̇A∆ε

2
1 cosωA dt

]
p

. (68)

The expression for the quantity EO can be provided in a semi-
analytical form similar to that of the quantities s and s + XY/2
by a semi-analytical computation of Eq. (65). Note that the ex-
pression for −dEEs, which is is in fact included in the polyno-
mial part of GST, is equal to the secular contribution of nuta-
tion to the quantity s. The expression for −dEEp is a series of
mainly Fourier terms similar to those appearing in the quan-
tity s + XY/2.

The expression for EO based on the P03/IAU-2000A-based
expressions for the precession-nutation quantities is, with a cut-
off of 0.1 µas t, for the amplitudes of the periodic terms:

EOP03 = −0.′′014506 − 4612.′′15653353 t

−1.′′39158165 t2 + 0.′′00000044 t3

+0.′′000029956 t4

−∆ψ cos εA +
∑

k

[
(C′s,0)k sinαk + (C′c,0)k cosαk

]
+0.′′00000087t sinΩ. (69)

Note that, in this computation, the nutation angles ∆ψ1 and ∆ε1

have been derived from the nutation angles ∆ψ and ∆ε referred
to the ecliptic of date through Eq. (35) with the already men-
tioned approximation (i.e. 1 µas after two centuries in EO).

With a cut-off of 0.1 µas, the periodic part of Eq. (69) in-
cludes, additionally to the classical nutation in right ascension,
33 Fourier terms and 1 Poisson term of degree 1, which corre-
sponds to the development of dEEp. The expression for dEEp

has, for a given accuracy, fewer terms than that for the other
quantities considered in the previous sections (see Table 1).
This can be explained through the relationships between EO
and those quantities (see Sect. 4.7).

4.3. Expressions for the GCRS CIO coordinates
based on the MCIO matrix elements

The position of the CIO can alternatively be provided by its
GCRS coordinates, which form the top row of the MCIO matrix.
They can be written, by substituting β = s into Eq. (25), as:

M(1, 1) = xCIO = (1 − aX2) cos s + aXY sin s,

M(1, 2) = yCIO = −aXY cos s − (1 − aY2) sin s,

M(1, 3) = zCIO = −X cos s + Y sin s, (70)

where a = 1/(1 + Z), and X, Y, Z are the GCRS coordinates of
the CIP.

We have computed semi-analytical series for these expres-
sions. Each series has six polynomial coefficients, plus a sum
of periodic terms, the number of which is shown in Table 2.
We note that the yCIO series is similar to that of −(s + XY/2)
(see Eq. (58)) and zCIO is similar to −XCIP (see Eq. (48)); in
fact, the xCIO series can be more simply computed through
(1 − (y2

CIO + z2
CIO))1/2.

The only series out of the three that could have a practi-
cal role is that for yCIO (see Table 1). The series for zCIO is
much longer than the other two, being essentially the same as
for the CIP X.

4.4. Expressions for the GCRS CIO coordinates
based on the equinox based matrix elements

The GCRS CIO coordinates can also be derived from the ele-
ments of the Mclass matrix and the EO, through Eq. (10).

Using the form Eq. (11) of the NPB matrix would pro-
vide expressions for xCIO, yCIO, zCIO as functions of the clas-
sical precession quantities, ψA, ωA and χA, nutation quanti-
ties ∆ψ and ∆ε, the J2000 obliquity of the ecliptic ε0 and the
frame biases ξ0, η0 and dα0. However, as we already noted in
Sect. 3.2.1, expressions for the elements derived from this form
of the Mclass matrix are not straightforward and using another
form of the NPB matrix is more appropriate.

As for the CIP case, elements of the MFW form
(cf. Eq. (15)) can provide simple expressions for the
GCRS CIO coordinates as functions of the new precession-
nutation-bias quantities referred to the ecliptic of date.
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These can be written as:

xCIO = M(1, 1) cos EO −M(2, 1) sin EO,

yCIO = M(1, 2) cos EO −M(2, 2) sin EO,

zCIO = M(1, 3) cos EO −M(2, 3) sin EO (71)

with:

M(1, 1) = cosψ′ cos γ′ + sinψ′ cosφ′ sin γ′,
M(1, 2) = cosψ′ sin γ′ − sinψ′ cosφ′ cosγ′,
M(1, 3) = − sinψ′ sin φ′,
M(2, 1) = cos ε′ sinψ′ cosγ′

−(cos ε′ cosψ′ cosφ′ + sin ε′ sin φ′) sin γ′,
M(2, 2) = cos ε′ sinψ′ sin γ′

+(cos ε′ cosψ′ cosφ′ + sin ε′ sin φ′) cosγ′,
M(2, 3) = cos ε′ cosψ′ sin φ′ − sin ε′ cosφ′ (72)

which allows us to compute semi-analytical series for xCIO,
yCIO, zCIO independently of those computed in Sect. 4.3.

4.5. Expression relating s, EO and the matrix Mclass

Combining Eqs. (3) and (10) we have:

MCIO = R3(−EO) ·Mclass = R3(−s) ·MΣ (73)

and hence:

R3(−s) = R3(−EO) ·Mclass ·MT
Σ . (74)

Element (2, 1) of the matrix R3(−s) is sin(s) or, without signif-
icant loss of accuracy, s. Therefore we can obtain s simply by
evaluating the corresponding element of the right-hand side of
Eq. (74). Writing the top and middle rows of the matrix Mclass

as Υ and y respectively, and the top row of the matrix MΣ as Σ,
this matrix element can be expanded as:

s � p sin EO + q cos EO, (75)

where p = Υ · Σ and q = y · Σ. We can also solve this for EO:

EO � arctan
ps − qw
qs + pw

, (76)

where w = (p2 + q2 − s2)1/2. From Eq. (4),

Σ ≡ (1 − aX2,−aXY,−X),

where a = 1/(1 + Z) and the CIP coordinates X, Y, Z are the
bottom row of Mclass. Therefore if we have Mclass and the EO,
we can use expression Eq. (75) to calculate s. Conversely, if we
have Mclass and s, we can use Eq. (76) to calculate the EO.

For applications where numerical consistency is
paramount, obtaining the EO from s is arguably more
useful than the reverse, as it enables one of the series for s
to act as the basis of the EO prediction (and ultimately the
computation of GST), and eliminates the need for the polyno-
mial part of the EO to cancel precisely the rapid motion of the
equinox obtained from the top row of Mclass. This advantage
is, however, at the expense of some additional computation.

4.6. Method using the property of orthogonality
of the instantaneous motion of the CIO

An alternative (that we will not consider in detail here) to the
usual quantities used for positioning the CIO has been devel-
oped by Kaplan (2003). This method is based on numerically
integrating a simple vector differential equation for the position
of a non-rotating origin on its reference sphere. This scheme di-
rectly yields the GCRS right ascension and declination of the
CIO as a function of time.

The computation of the GCRS position of the CIO results in
describing a point on the moving equator whose instantaneous
motion is always orthogonal to the equator. If n(t) is a unit
vector toward the instantaneous pole and x(t) is a unit vector
toward an instantaneous origin, the condition to be fulfilled is:

ẋ(t) = − [(x(t).ṅ(t)] n(t). (77)

The CIO position evaluated in this way is used to form the top
row of the MCIO matrix, which offers an alternative to the nu-
merical evaluation of Eq. (70).

4.7. Relationships between the methods

4.7.1. Relationships between the various points
on the CIP equator for positioning the CIO

The quantity s is the distance on the CIP equator of the CIO
from the point Σ, which is such that Σ0N = ΣN, N being the
node of the CIP equator on the GCRS equator.

The point Σ on the CIP equator is nearly at the middle
of the intersections (i) of the GCRS zero-meridian (point K)
and (ii) of the intermediate meridian passing through Σ0

(point H) (see Fukushima 2001). It is important to note that
the quantity s + XY/2 nearly represents (i.e. equals, up to the
fourth order in X and Y) the distance, on the CIP equator, of the
CIO from the point K (i.e. s + XY/2 is the CIO right ascension
of point K).

We have noted that, at a 0.1 µas level, the addition of the
quantity D = − Y2 t2[(X1/3) t + Xnut] to the quantity s + XY/2
eliminates the t3 term and the Poisson terms of degree 2 in the
resulting expression. This means that the quantity s+ XY/2+D
corresponds to the angular distance of the CIO from a point
on the CIP equator of which the motion with respect to Σ is
expressed by those terms.

The quantity EO is related to the CIO locator, s, by:

EO = σ̂Υ = (σN − σ0N) − (ΥN − Υ0N)

= s − (ΥN − Υ0N), (78)

where the quantities (ΥN − Υ0N) and (σN − σ0N) both in-
clude effects that come from the changing distance of N from
the CIO. The quantity EO (=s − [ΥN − Υ0N]) accounts for
the accumulated precession and nutation in right ascension
from J2000 to the epoch t, reckoned from the CIO. The rela-
tionship between the periodic part, denoted sp, of the quantity
s and the component−dEEp of the EO can be derived by equat-
ing the rotation along the CIP equator from the node N to the
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TIO in the equinox based and CIO based transformations, as
follows, at the µas level:

sp − dEEp = −1
2
∆ψ1 ∆ε1 sin ε0 − 1

2
ψA sin ε0∆ε1

+
1
12

(ψA)3 sin ε0∆ε1

+
1
4

sin2 ε0 cos ε0ψA∆ψ
2
1 +

1
4

sin2 ε0 cos ε0ψ
2
A∆ψ1

+
1
2

(ωA − ε0) sin ε0∆ψ1. (79)

The above expression, which is the periodic part of the effects
appearing in s that come from the changing distance of N from
the CIO, shows why the expression for the quantity dEEp is
simpler than that for the quantity s.

This expression also makes clear the simplification (see
Table 1) that is obtained by using the quantities s + XY/2
or s + XY/2 + D instead of s. This is because the periodic
part of the quantities −XY/2 and −XY/2−D are approximately
equal to the first two lines and the first three lines of Eq. (79),
respectively.

4.7.2. Relationships between the GCRS
CIO coordinates and the CIO locator

The quantity s is sufficiently small for us to write Eq. (70), to
an accuracy of 10 µas after one century, as:

xCIO � 1 − X2/2,

yCIO � −(s + XY/2),

zCIO � −X + s Y, (80)

which shows the similarity between (i) the yCIO and s + XY/2
series and (ii) the zCIO and −XCIP series.

4.8. Accuracy considerations

4.8.1. Dependence on the precession-nutation model

The CIO location depends only to a very small extent on the
precession-nutation model. Therefore, the accuracy that can re-
ally be achieved for predicting the location of the CIO is better
than a few µas after a century when the quantity s is used.

In contrast, the expression for the equinox CIO right as-
cension that includes the accumulated precession and nutation
in right ascension is directly dependent on that model, which
limits the accuracy of the EO quantity to a few mas after one
century.

For example, changing from the IAU 2000 precession so-
lution to the P03 solution gives rise to small changes, of the
order of 0.1 µas to a few µas for a century, in a few terms in the
polynomial part of the quantities s, s+ XY/2 and s+ XY/2+D
(the largest being of −2.7 µas in the quadratic term, the other
changes all being less than 0.5 µas). In contrast, this gives rise
in the expression for EO to much larger changes, of the order
of ∆EO = 358 t − 5913 t2 + 5 t3 + 125 t4.

However, as the resulting uncertainties in the EO are in the
equinox position rather than the CIO position, the EO can be

used to locate the latter to a comparable accuracy to that from
the other methods provided that formulations compatible at mi-
croarcsecond level be used for the EO and equinox based NPB.

4.9. Dependence on the choice of method

We have compared the series Eqs. (54), (58) and (61) that
we obtained using the three different expressions (i.e. s, s +
XY/2 and s + XY/2 + D) for the CIO locator described in
Sects. 4.1.1−4.1.3, respectively, based on the P03/IAU2000A
series that were described earlier for X and Y.

We have also compared the series for the GCRS CIO co-
ordinates that we obtained using the two different expres-
sions for the elements of the GCRS to CIRS transformation
matrix described in Sects. 4.3 and 4.4. Those expressions
for xCIO, yCIO, zCIO were based on the P03/IAU2000A series
that were described earlier for the elements of the CIO based
and equinox based NPB matrix, respectively, and for the quan-
tities s and EO, respectively.

These various comparisons showed that the semi-analytical
expressions for positioning the CIO all agree at the µas level
after one century.

5. Numerical comparisons

All the comparison tests reported in the following sections are
based upon the P03 precession model and the IAU 2000A nu-
tation model (including frame biases) with the slight modifica-
tions (Eqs. (44) and (46)) needed to make the nutation angles
conform to the P03 precession.

5.1. Semi-analytical expressions for X and Y against
classical precession-nutation

The differences between the predictions of CIP X, Y from the
semi-analytical series (Eqs. (50) and (51)) and those from eval-
uating the elements (3, 1) and (3, 2) of the classical NPB matrix
are shown in Figs. 3 and 4. The matrix elements were generated
using the Fukushima-Williams 4-rotation method (Eq. (38)).

5.2. Semi-analytical expression for s against
numerical integration

The differences between s determined from the semi-analytical
series for s + XY/2 (see Eq. (58)) and from direct numerical
integration are shown in Fig. 5. The numerical integration was
of Eq. (53).

5.3. Semi-analytical expression for s against
numerical integration based on the kinematical
definition of the CIO

An alternative numerical-integration method is to imple-
ment the CIO’s kinematical definition literally, generating the
GCRS-to-CIRS rotation matrix by successive infinitesimal ro-
tations about an axis through the instantaneous line of nodes.
For CIP velocity (ẋ, ẏ) in the instantaneous coordinate system
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Fig. 3. Comparison between the CIP X-coordinate determined from
the semi-analytical series and by evaluating the matrix element (3, 1)
of the classical NPB matrix. See Sect. 5.1.

Fig. 4. Comparison between the CIP Y-coordinate determined from
the semi-analytical series and by evaluating the matrix element (3, 2)
of the classical NPB matrix. See Sect. 5.1.

and a time-step ∆t, the CIP moves by (ẋ∆t, ẏ∆t), or (∆x,∆y).
This can be represented as a “rotation vector” (see Sect. 2.3),
the components of which are (−∆y,+∆x, 0), the zero z-
component being the NRO condition. The vector can be trans-
formed into a rotation matrix by applying Eq. (18) for small
values of (∆x,∆y), leading to:

M(t) �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

t∏
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 −∆x∆y/2 −∆x

−∆x∆y/2 1 −∆y
+∆x +∆y 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦M(0), (81)

where M(0) is the GCRS to CIRS rotation matrix at epoch
and M(t) the matrix at date t. (For sufficiently small time-steps,
matrix elements (1, 2) and (2, 1) can be set to zero.)

Because (∆x,∆y) are in the instantaneous coordinate sys-
tem, i.e. the CIRS, the changes (∆X,∆Y) in the GCRS position
of the CIP must be rotated before use. We first complete the

Fig. 5. Comparison between the CIO locator s determined from the
semi-analytical s+XY/2 series and from a direct numerical integration.
See Sect. 5.2.

CIP change vector by writing ∆Z � −(X∆X + Y∆Y)/Z, and
then rotate it using Eq. (25) with β = s. After eliminating in-
significant terms, we find that:

∆x � ∆X + ∆XX2/2,

∆y � ∆Y + ∆X(XY/2 + s). (82)

(An alternative is simply to rotate the new X, Y, Z using the
GCRS to CIRS matrix from the previous step of the numeri-
cal integration.)

To start the integration, we compute M(0), the GCRS
to CIRS matrix for the CIP and CIO at epoch, using any
of the methods described in Sect. 2. Then, for successive
dates t = ∆t, 2∆t..., we determine the GCRS coordinates X, Y
of the CIP, using any of the methods described in Sect. 3, and
obtain ∆X,∆Y by differencing from the previous step. We use
Eq. (82) to transform the changes to the CIRS and then Eq. (81)
to apply the increment of rotation to M(t) to obtain M(t + ∆t).

For any particular M(t) and corresponding X, Y, we can
solve for s as follows. Using Eq. (4) to evaluate Ms=0, we can
then use Eq. (3) to obtain:

M(t) ·MT
s=0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
cos s − sin s 0
sin s cos s 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (83)

We then solve for s by using either elements (1, 1) and (1, 2)
or (2, 1) and (2, 2) and taking the arctangent.

This procedure was used to compute s over a ±200 year
test interval, using a time step of 0.1 days, for comparison
with the predictions from the direct numerical integration of s
(Sect. 5.2). With the approximations shown, the results agreed
to a few picoarcseconds throughout the test interval.

5.4. End-to-end tests

This paper has set out a number of ways of (i) locating the CIP
and CIO; (ii) forming the complete bias-precession-nutation
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rotation matrices; and (iii) calculating the associated Earth ro-
tation measures. Trial software implementations of these algo-
rithms were developed, both to validate the formulations and to
assess their relative merits in various practical software roles.

Our approach was to implement the full GCRS to
TIRS transformation by a variety of routes and, for test dates
spanning four centuries centered on J2000, to see how well
they agreed and to compare their computional efficiency. One
of the methods, selected for its conciseness and rigor, was
adopted as the reference. Numerical agreement was judged
on the basis of the total rotational difference relative to the
reference method: for two GCRS to TIRS matrices Rref and
Rtest, the rotational difference was defined as the rotation angle
of the matrix Rref · RT

test.

The specific objectives of the tests were, for each method:

1. Verify that the differences with respect to the reference
method were satisfactorily small – no more than a few mi-
croseconds at the ends of the time span.

2. Assess the suitability for concise computer implementation
using a procedural language such as Fortran.

3. Compare the computation time with that consumed by the
reference method.

5.4.1. Methods tested

Seven different methods were tried, plus the adopted reference
method:

Reference method: for the given date, compute the
Fukushima-Williams precession angles (Sect. 2.2.3) and the
MHB2000 nutation angles (luni-solar plus planetary), and form
the NPB matrix (Eq. (15)). Compute the EO (Sect. 4.2) and the
ERA, and set GST = ERA−EO. Use the third line of Eq. (62)
to obtain the GCRS to TIRS matrix.

Method 1: compute X, Y and s + XY/2 from series and
form the NPB matrix (Sect. 2.1), then apply the ERA, i.e. the
P03 equivalent of the technique described in IERS Conventions
(2003).

Method 2: as for the reference method, compute the
Fukushima-Williams precession angles and the MHB2000 nu-
tation angles, then obtain X, Y by evaluation of the corre-
sponding two elements of the NPB matrix (Eq. (38)). Evaluate
the s + XY/2 series (Sect. 4.1.2), obtain s and evaluate the
CIO based NPB matrix (Eq. (3)), then apply the ERA.

Method 3: as for the reference method, obtain the classical
NPB matrix and EO, then use Eq. (75) to obtain s. Form the
CIO based matrix (Eq. (3)) then compute and apply the ERA
(first line of Eq. (62)).

Method 4: obtain the classical NPB matrix and EO as for
the reference method. Use the EO to rotate the matrix onto the
CIO and then apply ERA (Eq. (62), middle line).

Method 5: as for Method 1, obtain X, Y from series, but
instead of s + XY/2 use the s + XY/2 + D series (Eq. (61)) to
obtain s, then construct the CIO based matrix using Eq. (3) and
apply the ERA.

Method 6: evaluate the x, y, z components of the equinox
based r-vector (Sect. 2.3) from series and transform it into the

Fig. 6. The total rotational differences between the GCRS to TIRS ma-
trices generated with the Fukushima-Williams/GST method and the
X,Y, s/ERA method (Method 1) from 1800 to 2200.

classical NPB matrix (Eqs. (16)−(18)). Compute the EO from
series (Sect. EO), obtain GST from ERA−EO and form the
GCRS to TIRS matrix (Eq. (62), bottom line).

Method 7: evaluate the x, y, z components of the CIO based
r-vector from series and transform it into the CIO based
NPB matrix, then apply the ERA.

5.4.2. Numerical agreement

The rotational differences between the reference method (F-W,
classical) and Method 1 (X, Y, s from series) are plotted in
Fig. 6. At the ends of the time span the agreement is averag-
ing about 5 µas. The results are dominated by the CIP position
predicted by the respective algorithms.

For Method 2, X and Y are from the F-W matrix itself and
the disagreement drops to the 1 µas level (Fig. 7). This time the
differences are almost entirely due to the difference between
the s + XY/2 and EO formulations.

Method 3 and Method 4 give essentially perfect results,
limited mainly by rounding errors. In both cases the average
errors are at the 20 pas level and are uniform across the time
span.

Method 5 in effect tests the s + XY/2 + D series, delivering
results of similar accuracy to Method 1 (Fig. 6), the latter based
on the s+XY/2 series. The great similarity of the residuals with
respect to the reference method shows that these two options
for obtaining s work equally well in the given context.

Methods 6 and 7 test the r-vector approach, with reference
to the equinox and the CIO respectively. The results are quite
similar, at 5 µas level at the ends of the time span, with the
CIO variant (Fig. 8) marginally the better of the two.

5.4.3. Software efficiency

All the methods tested are based ultimately on the MHB2000
nutation model, which contains terms in various powers of t
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Fig. 7. The Method 2 residuals, which in effect compare the s + XY/2
and EO formulations.

Fig. 8. Residuals from the r-vector series, CIO-based.

at 1365 different frequencies. This means that the computer
code is in all cases dominated by nutation terms. Methods 2−5,
plus the reference method, all use the MHB2000 nutation
model itself, as implemented in the IAU SOFA routine
iau_NUT00A (Standards Of Fundamental Astronomy, Wallace
2002). The remainder, Methods 1, 6 and 7, implement the
MHB2000 nutation in their own way. The computer code to be
compared therefore comprises four Fortran subroutines, listed
in Table 3. The execution times for the seven methods are
shown in Table 4.

The quoted reductions in size are, if anything, conserva-
tive, because the three new algorithms provide frame bias and
precession as well as nutation, though the latter dominates as
already mentioned. The MHB2000 model is itself organized in
an efficient way, to a sufficient extent to make the comparisons
fair.

Note that Method 6, the equinox based r-vector method,
is of theoretical interest only. Because the GST is required,
and hence the equation of the equinoxes, the nutation com-

Table 3. The Fortran code used in the different methods tested. The
line counts exclude blanks and comments. When writing these pro-
grams, an optimum balance was sought between efficiency and clarity.

Algorithm Lines Methods

iau_NUT00A 3116 ref. 2-5

X, Y series 2363 (24% smaller) 1

r-vector series, equinox 2530 (19% smaller) 6

r-vector series, CIO 2432 (22% smaller) 7

Table 4. The execution speed of the different methods. The figures
are for generating the full GCRS to TIRS matrix, i.e. they include the
computation of either GST or ERA.

Method Speed

reference 100%

1 16% faster

2 �
3 �
4 �
5 �
6 half as fast

7 23% faster

ponent ∆ψ is needed, which would mean evaluating the
MHB2000 nutation model as well as the r-vector series. This
extra overhead explains why Method 6 took twice as long as
the others and rules out its practical use.

6. Summary and conclusions

We have described a number of approaches to forming the
precession-nutation transformation and various ways of locat-
ing the pole and longitude origin. We have reported on both
the real accuracy and the computational precision that can
be achieved, and have assessed the suitability of the different
methods for high-accuracy applications in the future. These in-
clude applications requiring high-accuracy knowledge of the
Earth’s orientation in space and scientific studies for improving
the dynamical model of Earth’s rotation by comparing predic-
tions to VLBI observations.

First, we have confirmed that the use of the CIO paradigm,
that keeps the concept of the pole position and Earth rotation
separate, leads to a cleaner implementation that has particular
advantages for high accuracy Earth rotation studies.

Second, we have shown that using the EO clarifies the
differences between the classical and CIO-based transforma-
tions, for example by showing how ERA and the IAU 2000
GST(UT1) are related.

Third, as users of the classical method should benefit from
the full accuracy of the latest models, we have tried to en-
sure with the GCRS to TIRS transformation the equinox based
method has the same accuracy as that achievable with the
CIO based method.
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Fourth, we have confirmed that the bias-precession-
nutation F-W angles lead to the most concise expressions
for the CIP X, Y coordinates, given the current form of the
precession-nutation models, and provide a simple link between
the classical and new methods.

Fifth, we have investigated how to express the complete
NPB transformation as the three numbers making up the
rotation vector (Sects. 2.4.3 and 2.3). Although this scheme is
not efficient in all cases, series for the CIO based r-vector x,
y and z components produce a result that is quite competitive
with any of the other methods, and this may influence the
development of future models and applications.

We have in particular showed the following:

(i) Once the parameters of the precession-nutation model
are chosen, the semi-analytical series for calculating the
CIP and CIO directions obtained by several different
methods all agree at a submicroarcsecond level.

(ii) The difference between the predictions of the CIP X, Y
from semi-analytical series and by evaluating the corre-
sponding elements of the classical NPB matrix are of the
order of 5 µas after 2 centuries, which meets the require-
ments of high-accuracy applications. Note, however, that
due to the uncertainties in the precession-nutation model
parameters, the real accuracy that can be achieved in the
predicted CIP location is only of the order of 2 mas.

(iii) The differences between the predictions of the series for
the CIO direction and numerical integration are of the or-
der of 5 µas after 2 centuries, which meets the require-
ments of high-accuracy applications.

(iv) Given the known uncertainties in the current precession-
nutation model, the GCRS direction of the CIO can be
predicted, by a variety of methods, to an accuracy of a
few microarcseconds. The equation of the origins is sev-
eral orders of magnitude more dependent on the model;
however, as the resulting uncertainties are in the equinox
position rather than the CIO position, the EO can be used
to locate the latter to a comparable accuracy to that from
the other methods provided that formulations compatible
at microarcsecond level be used for the EO and equinox
based NPB.

(v) The differences between the various ways of implement-
ing the full GCRS to TIRS transformation are of the order
of 5 µas after 2 centuries.
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Appendix A: the electronic tables

Tables 5−11 for the complete series developments for the
quantities s (Eq. (53)), s + XY/2 (Eq. (58)), s + XY/2 + D
(Eq. (60)), EO + ∆ψ cos εA (where EO is given by Eq. (69)),
xCIO, yCIO, zCIO (Eq. (70)), respectively, retaining all terms
larger than 0.1 µas, are available in electronic form at the CDS.

These tables represent the Fourier and Poisson terms of the
series, as output by the gregoire software. The general for-
mula is:

S =
∑

(i1 ,i2,...,in)

p∑
k=0

C(k)
i1,i2,...,in

tk cos(i1y1 + i2y2 + ... + inyn)

+S (k)
i1,i2,...,in

tk sin(i1y1 + i2y2 + ... + inyn) (A.1)

where t is the time as given by Eq. (9), the upper limit p of the
powers of t in the Poisson terms is equal to 5, and the quanti-
ties C(k)

i1,i2,...,in
and S (k)

i1,i2,...,in
are numerical coefficients which are

limited by a precision ε, equal to 0.1 µas, by omitting terms
where

|C(k)
i1,i2,...,in

| + |S (k)
i1,i2,...,in

| < ε. (A.2)

The arguments of the series have formal components described
by the set of integers (i1, i2, ..., in), with n = 14, and the fun-
damental lunisolar and planetary arguments of the nutation
theory.
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