Space-Time reference systems

Michael Soffel

Dresden Technical University

What are Space-Time Reference Systems (RS)?

Science talks about events (e.g., observations):
something that happens during a short interval of time in some small volume of space

Both space and time are considered to be continous
combined they are described by a ST manifold

A Space-Time RS basically is a ST coordinate system (t, x) describing the ST position of events in a certain part of space-time

In practice such a coordinate system has to be realized in nature with certain observations; the realization is then called the corresponding

Reference Frame

Newton's space and time

In Newton's ST things are quite simple:
Time is absolute as is Space ->
there exists a class of preferred inertial coordinates (t, \mathbf{x}) that have direct physical meaning, i.e.,
observables can be obtained directly from the coordinate picture of the physical system.

Newton's absolute space

Example: observed angle θ between two incident light-rays 1 and 2

$$
\mathbf{x}_{\mathrm{i}}(\mathrm{t})=\mathrm{x}_{\mathrm{i}}^{0}+\mathrm{c} \mathbf{n}_{\mathrm{i}}\left(\mathrm{t}-\mathrm{t}_{0}\right)
$$

$$
\cos \theta=\mathbf{n}_{1} \cdot \mathbf{n}_{2}
$$

Is Newton's conception of Time and Space in accordance with nature? NO!

The reason for that is related with properties of light propagation upon which time measurements are based

Presently: The (SI) second is the duration of
9192631770
periods of radiation that corresponds to a certain transition in the Cs-133 atom

Principle of the constancy of the velocity of light in vacuum:

The light velocity is independent upon the state of motion of the light source, frequency and polarization

$$
c^{\prime}=c+k v
$$

If violated:
up to 5 images could be seen of a star in a binary system at the same time

Michelson und Morley (1887):
the value of c also does not depend upon the velocity of the observer

MESSUNG VON UNTERSCHIEDEN IN DER

LICHTGESCHWINDIGKEIT

Im Michelson-Morley-Interferometer wird das Licht einer Quelle durch eine halbverspiegelte Glasscheibe in zwei Strahlen aufgeteilt. Das Licht der beiden Strahlen bewegt sich rechtwinklig zueinander und wird am Ende wieder zu einem einzigen Strahl vereinigt, indem es abermals zu der halbverspiegelten Scheibe gelenkt wird. Je nach Strahllänge und nach der Lichtgeschwindigkeit in den beiden Strahlen überlagern sich diese in unterschiedlicher Weise: Trifft Wellenberg auf Wellenberg, verstärken sich die Wellen gegenseitig, trifft Wellenberg auf Wellental, löschen sich die Teilstrahlen aus. Veränderungen, etwa der Übergang von Auslöschung zu Verstärkung, lassen sich beobachten und zeigen an, wenn die relative Lichtgeschwindigkeit in den Teilstrahlen variiert.

Rechts: Diagramm des Experiments nach der Abbildung, die 1887 im Scientific American erschien.

The famous Michelson \& Morley experiment 1887

Cleveland, Ohio

turning the apparatus did not change the interference pattern

A light-clock at rest

$$
\Delta t_{0}=\frac{2 \mathrm{~L}}{\mathrm{c}}
$$

The moving light-clock

$$
L^{2}+\left(\frac{v \Delta t}{2}\right)^{2}=\left(\frac{c \Delta t}{2}\right)^{2}
$$

The moving light-clock

same value for c as for the clock at rest

$$
L^{2}+\left(\frac{v \Delta t}{2}\right)^{2}=\left(\frac{c \Delta t}{2}\right)^{2}
$$

We get:

a moving clock appears to be slowed down

It turns out that the concept of a ST metric tensor is of greatest value

GRT: metric as fundamental object

- Pythagorean theorem in 2-dimensional Euclidean space

- length of a curve

$$
d s^{2}=d x^{2}+d y^{2} \quad \ell=\int_{A}^{B} d s
$$

$$
\begin{gathered}
x=r \cos \theta ; \quad y=r \sin \theta \\
d x=d r \cos \theta-r \sin \theta d \theta \\
d y=d r \sin \theta+r \cos \theta d \theta \\
d x^{2}=\cos ^{2} \theta d r^{2}-2 r \sin \theta \cos \theta d r d \theta+r^{2} \sin ^{2} \theta d \theta^{2} \\
d y^{2}=\sin ^{2} \theta d r^{2}+2 r \sin \theta \cos \theta d r d \theta+r^{2} \cos ^{2} \theta d \theta^{2} \\
d s^{2}=d x^{2}+d y^{2}=d r^{2}+r^{2} d \theta^{2}=\sum_{i=1}^{2} \sum_{j=1}^{2} g_{i j} d x^{i} d x^{j}
\end{gathered}
$$

Metric tensor: special relativity

- special relativity, inertial coordinates

$$
x^{\mu} \equiv\left(x^{0}, x^{i}\right)=(c t, x, y, z)
$$

- The constancy of the velocity of light in inertial coordinates

$$
d \mathbf{x}^{2}=c^{2} d t^{2}
$$

can be expressed as $d s^{2}=0$ where $d s^{2}=-c^{2} d t^{2}+d \mathbf{x}^{2}$

$$
\begin{aligned}
g_{00} & =-1 \\
g_{0 i} & =0 \\
g_{i j} & =\delta_{i j}=\operatorname{diag}(1,1,1)
\end{aligned}
$$

Light rays are null geodesics

Moreover, from the metric one immediately gets the observed time interval by

$$
\begin{aligned}
& d s^{2}=-c^{2} d \tau^{2}=-c^{2} d t_{0}^{2}=-c^{2}\left(d t^{2}-d \mathbf{x}^{2} / c^{2}\right) \\
& \text { or } \\
& d t_{0}^{2}=d t^{2}\left(1-\mathbf{v}^{2} / c^{2}\right)
\end{aligned}
$$

coordinate time interval
that agrees with the formula above

The gravitational field can also be described with the ST metric tensor

The reason is the Equivalence Principle (EP)

WEP:

Apart from tidal forces all uncharged test bodies fall at the same rate

inertial mass = heavy mass

WEP: pendelum measurements

Different materials same swinging periods ($\mathrm{I}=$ const.)

Friedrich Wilhelm Bessel (1784-1846)

TESTS OF THE
 WEAK EQUIVALENCE PRINCIPLE

WEP: Torsion pendulums

Loránd Eötvös (1848-1919)

Eötvös
Braginsky-Panov (1972)
Adelberger
(2003)

A.Einstein:

Gravity can be understood as effect of space-time curvature

Gravity as phenomenon of space-time

 curvaturePrecondition:
Equivalence Principle

Einstein's theory of gravity

To lowest order the gravitational potential U enters the metric tensor

$$
\begin{align*}
g_{00} & =-1+\frac{2 U}{c^{2}}+O\left(c^{-4}\right) \tag{*}\\
g_{0 i} & =O\left(c^{-3}\right) \\
g_{i j} & =\delta_{i j}+O\left(c^{-2}\right)
\end{align*}
$$

The Newtonian field equation (Poisson equation)

$$
\Delta U=-4 \pi G \rho
$$

is contained in Einstein's field equations

$$
\Phi\left(g_{\mu \nu}, \partial g_{\mu \nu}\right)=-4 \pi G \mathcal{F} \quad \text { matter variables }
$$

Einstein's field equations determine the metric tensor up to four degrees of freedom that fix the coordinate system (gauge freedom)

In the following only the so-called

harmonic gauge

will be used (generalized Cartesian inertial coordinates)

A ST reference system if determined
by

- Origin and spatial orientation of spatial coordinates
- Form of the metric tensor

One consequence of \mathbf{U} in the metric: gravitational redshift:

If a light signal propagates in a gravitational field from below to above its frequency appears to be reduced,
i.e., redshifted

Since the SI second is defined by the duration of a certain number of oscillations of a certain radiation resulting from Cs -133 atoms
\rightarrow the rate of a clock depends upon its location in the gravity field

GPS:

24 satellites in 20000 km height
emitting time signals

GPS accuracies

Positions: about 30 m

DGPS: cm - mm
at highest accuracies the action of gravity has to be taken into account

In the near future:

atomic clocks might be employed as gravimeters

Laser-cooled Cs-fountain clocks:
$\Delta f / f \approx 10^{-15}$

NIST Ytterbium optical clock at $10 \mu \mathrm{~K}$ in optical lattice
10^{-18} !
(Age of universe: $4 \times 10^{17} \mathrm{~s}$)

A Geocentric RS: first approximation

$$
d s^{2} \simeq G_{00} c^{2} d T^{2}+G_{a b} d X^{a} d X^{b}
$$

$$
(*) \quad \simeq-\left(1-\frac{2 U}{c^{2}}\right) c^{2} d T^{2}+(d \mathbf{X})^{2}
$$

$$
=-\left(1-\frac{2 U}{c^{2}}-\frac{\mathbf{V}^{2}}{c^{2}}\right) c^{2} d T^{2}=-c^{2} d \tau^{2}
$$

$T=$ TCG (Geocentric Coordinate Time), τ (proper) time of real clock

For earthbound clocks:

$$
\begin{aligned}
& \frac{d \tau}{d T} \simeq 1-\frac{U_{\mathrm{geo}}}{c^{2}} \simeq 1-\frac{U_{0}}{c^{2}}+\frac{g h}{c^{2}} ; \quad U_{\mathrm{geo}}=U+\frac{1}{2} \mathbf{V}_{\mathrm{rot}}^{2} \\
& f_{\mathrm{PTB}} \simeq\left(1+1.8 \times 10^{-13}\right) f_{\mathrm{NBS}} \rightarrow \Delta \tau \simeq 5.4 \mu \mathrm{~s} / \mathrm{a}
\end{aligned}
$$

The timescale TT: it should differ from TCG by a constant Rate. Original idea: this rate should agree with that of a clock on the geoid. However: geoid not known to sufficient precision.

$$
\begin{aligned}
& T T=k_{E} T=k_{E} \mathrm{TCG} \\
& k_{E}=1-6.969290134 \times 10^{-10}
\end{aligned}
$$

(defining constant)

The timescale TAI: practical realization of TT

Fig. 2.24 Scheme how TAI is realized

TT, TAI and UTC

$\mathrm{TT}=\mathrm{TAI}+32.184 \mathrm{~s}$
TAI $=\mathrm{UTC}+\mathrm{N} \mathrm{s}$
leap seconds

ST reference systems with higher accuracy

Usually for applications within our solar system the (first) post-Newtonian approximation to Einstein's theory of gravity (in harmonic coordinates) is employed

The post-Newtonian framework

Slow-motion, weak field approximation

$$
\epsilon^{2} \sim\left(\frac{v}{c}\right)^{2} \sim \frac{G M}{c^{2} R}<10^{-5} \quad \text { in solar system }
$$

$$
\mathrm{EOM}=\mathrm{EOM}_{\mathrm{Newton}}+\epsilon^{2}(\mathrm{EOM})_{1 \mathrm{PN}}+\ldots
$$

Short history:

(1915 Einstein)

1916 Droste, De Sitter
1917 Lorentz, Droste

1937 Levi-Civita

1938 Chazy; Einstein, Infeld, Hoffmann
1939 Fock
1951 Papapetrou
1965 Chandrasekhar
1981 Caporali
1985 Grishuk, Kopejkin
1989 Brumberg, Kopejkin
1991 Damour, Soffel, Xu

> Thibault Damour
> Thibault Damour
Institut des Hautes Etudes Scientifiques, 91440 Bures sur Yvette, France
> and Département d'Astrophysique Relativiste et de Cosmologie, Observatoire de Paris,
Centre National de la Recherche Scientifique, 92195 Meudon CEDEX, France

Michael Soffel and Chongming Xu*
Theoretische Astrophysik, Universität Tübingen, Auf der Morgenstelle 10, 7400 Tübingen Federal Republic of German
(Received 2 November 1990)
We present a new formalism for treating the general-relativistic celestial mechanics of systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies. This fo malism is aimed at yielding a complete description, at the first post-Newtonian approximation leve of (i) the global dynamics of such N-body systems ("external problem"), (ii) the local gravitationa structure of each body ("internal problem"), and, (iii) the way the external and the internal prob lems fit together ("theory of reference systems"). This formalism uses in a complementary manne $N+1$ coordinate charts (or "reference systems"): one "global" chart for describing the overall dy
namics of the N bodies, and N "local" charts adapted to the separate description of the structure and environment of each body. The main tool which allows us to develop, in an elegant manner, constructive theory of these $N+1$ reference systems is a systematic use of a particular "exponential" parametrization of the metric tensor which has the effect of linearizing both the field equa tions, and the transformation laws under a change of reference system. This linearity allows a treat ment of the first post-Newtonian relativistic celestial mechanics which is, from a structural point of ous attempts in several other respects: the structure of the stress-energy tensor is left completel open; the spatial coordinate grid (in each system) is fixed by algebraic conditions while a convenien "gauge" flexibility is left open in the time coordinate [at the order $\delta t=O\left(c^{-4}\right)$]; the gravitational field locally generated by each body is skeletonized by particular relativistic multipole moments re cently introduced by Blanchet and Damour, while the external gravitational field experienced by per we lay the foundations of our formalism, with special emphasis on the definition and properties of the N local reference systems, and on the general structure and transformation properties of the gravitational field. As an illustration of our approach we treat in detail the simple case where eac body can, in some approximation, be considered as generating a spherically symmetric gravitationa field. This "monopole truncation" leads us to a new (and, in our opinion, improved) derivation of relativistic motion of bodies endowed with arbitrary multipole structure will be the subject of subse quent publications.

Canonical form of the PN harmonic metric

$$
\begin{aligned}
& g_{00}=-1+\frac{2}{c^{2}} w(t, \boldsymbol{x})-\frac{2}{c^{4}} w^{2}(t, \boldsymbol{x}), \\
& g_{0 i}=-\frac{4}{c^{3}} w^{i}(t, \boldsymbol{x}), \\
& g_{i j}=\delta_{i j}\left(1+\frac{2}{c^{2}} w(t, \boldsymbol{x})\right) .
\end{aligned}
$$

w: gravito-electric potential, generalizes U
w^{i} : gravito-magnetic potential (Lense-Thirring effects)

Celestial RS: quasi-inertial, no-rotation w.r.t. remote Astronomical objects (quasars)

We have to distinguish a
BCRS (Barycentric Celestial Reference System)
from a
GCRS (Geocentric Celestial Reference Sytem)

For certain applications we need even more CRS

Metric tensor and reference systems

- In relativistic astronomy the
- BCRS (Barycentric Celestial Reference System)
- GCRS (Geocentric Celestial Reference System)
- Local reference system of an observer
play an important role.
- All these reference systems are defined by

the form of the corresponding metric tensor.

But: the RS are just coordinate systems that can be chosen in many ways (they have no physical meaning)

In addition to the RS we need theories for the

- observables
- associated techniques
- signal propagation

Reference systems, frames and observables in GRT

Relativistic theory of observables: examples

- proper time interval $d \tau$: obtained directly from the metric
- (ds along the clock's worldline)

$$
d \tau^{2}=-\frac{1}{c^{2}} d s^{2}
$$

- observed angle between two incident light rays 1 and 2

3 ST tangent vectors:
t to observer's world-line
k1 and k2 to the two light-rays

Relativistic metrology

21-m VLBI antenna Wettzell, Germany

GPS

LLR

Astrometry: accuracies

Gravitational light deflection

with Sun
without Sun

equations of light propagation

- The equations of light propagation in the BCRS

$$
\begin{aligned}
& g_{00}=-1+\frac{2}{c^{2}} w(t, x) \\
& g_{0 i}=0 \\
& g_{i j}=\delta_{i j}\left(1+\frac{2}{c^{2}} w(t, x)\right)
\end{aligned}
$$

- Relativistic corrections to the "Newtonian" straight line:

$$
\boldsymbol{x}(t)=\boldsymbol{x}_{0}(t)+c \boldsymbol{\sigma}\left(t-t_{0}\right)+\frac{1}{c^{2}} \Delta \boldsymbol{x}(t)
$$

Gravitational light deflection

- The principal effects due to the major bodies of the solar system in μ as
- The maximal angular distance to the bodies where the effect is still >1 μ as

body	Monopole	$\psi_{\max }$	Quadrupole	$\psi_{\max }$	ppN	$\psi_{\max }$
Sun	1.75×10^{6}	180°			11	53^{\prime}
(Mercury)	83	9^{\prime}				
Venus	493	4.5°				
Earth	574	125°				
Moon	26	5°				
Mars	116	25^{\prime}				
Jupiter	16270	90°	240	$152^{\prime \prime}$		
Saturn	5780	17°	95	$46^{\prime \prime}$		
Uranus	2080	71^{\prime}	8	$4^{\prime \prime}$		
Neptune	2533	51^{\prime}	10	$3^{\prime \prime}$		

Gravitational light deflection: moons, minor planets

- A body of mean density ρ produces a light deflection exceeding δ if its radius:

Gravitational light deflection:

The Barycentric Celestial Reference System

- The BCRS is suitable to model processes in the whole solar system

$$
\begin{aligned}
& \begin{array}{l}
g_{00}=-1+\frac{2}{c^{2}} w(t, \boldsymbol{x})-\frac{2}{c^{4}} w^{2}(t, \boldsymbol{x}), \\
g_{0 i}=-\frac{4}{c^{3}} w^{i}(t, \boldsymbol{x}), \\
g_{i j}=\delta_{i j}\left(1+\frac{2}{c^{2}} w(t, \boldsymbol{x})\right) . \\
\mathrm{t}=\mathrm{TCB} \\
w(t, \boldsymbol{x})=G \int d^{3} x^{\prime} \frac{\sigma\left(t, \boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}+\frac{1}{2 c^{2}} G \frac{\partial^{2}}{\partial t^{2}} \int d^{3} x^{\prime} \sigma\left(t, \boldsymbol{x}^{\prime}\right)\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|, \quad w^{i}(t, \boldsymbol{x})=G \int d^{3} x^{\prime} \frac{\sigma^{i}\left(t, \boldsymbol{x}^{\prime}\right)}{\left|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right|}, \\
\sigma=\left(T^{00}+T^{k k}\right) / c^{2}, \quad \sigma^{i}=T^{0 i} / c, \quad T^{\mu v} \text { is the BCRS energy-momentum tensor }
\end{array}
\end{aligned}
$$

$$
\lim _{\substack{|\mathbf{x}| \rightarrow \infty \\ t=\text { const }}} g_{\mu \nu}=\eta_{\mu v}
$$

Barycentric: orientation of spatial axes

IAU-GA 2006, Prag:
orientation of spatial BCRS axes given by the ICRF

Geocentric Celestial Reference System

The GCRS is adopted by the International Astronomical Union (2000) to model physical processes in the vicinity of the Earth:

A: The gravitational field of external bodies is represented only in the form of a relativistic tidal potential.
B: The internal gravitational field of the Earth coincides with the gravitational field of a corresponding isolated Earth.

$$
\begin{aligned}
& G_{00}=-1+\frac{2}{c^{2}} W(T, X)-\frac{2}{c^{4}} W^{2}(T, X) \\
& G_{0 a}=-\frac{4}{c^{3}} W^{a}(T, X) \\
& G_{a b}=\delta_{a b}\left(1+\frac{2}{c^{2}} W(T, X)\right)
\end{aligned}
$$

- In the local A-frame: the local metric $W^{\alpha} \equiv\left(W, W^{a}\right)$ is split into self- and external-part

$$
W^{\alpha}=W^{+\alpha}+\bar{W}^{\alpha}
$$

- self-part is expanded in terms of "physical" mass- and current-moments: M_{L}, S_{L}
- external part determined by transformation of potentials

self-part coming from the Earth itself

- In the local A-frame: the local metric $W^{\alpha} \equiv\left(W, W^{a}\right)$ is split into self- and external-part

$$
W^{\alpha}=W^{+\alpha}+\bar{W}^{\alpha}
$$

- self-part is expanded in terms of "physical" mass- and current-moments: M_{L}, S_{L}
- external part determined by transformation of potentials
- In the local A-frame: the local metric $W^{\alpha} \equiv\left(W, W^{a}\right)$ is split into self- and external-part

$$
W^{\alpha}=W^{+\alpha}+\bar{W}^{\alpha}
$$

- self-part is expanded in terms of "physical" mass- and current-moments: $M_{L} \mathcal{S}_{L}$
- external part determined by transformation of potentials

External part coming from inertial effects (linear term) and other bodies (quadratic and higher order terms)

- The BCRS and GCRS potentials of the central body are simply related:

$$
\begin{aligned}
W_{\mathrm{E}}(T, \boldsymbol{X}) & =w_{\mathrm{E}}(t, \boldsymbol{x})\left(1+\frac{2}{c^{2}} v_{\mathrm{E}}^{2}\right)-\frac{4}{c^{2}} v_{\mathrm{E}}^{i} w_{\mathrm{E}}^{i}(t, \boldsymbol{x})+O\left(c^{-4}\right) \\
W_{\mathrm{E}}^{a}(T, \boldsymbol{X}) & =R_{i}^{a}\left[w_{\mathrm{E}}^{i}(t, \boldsymbol{x})-v_{\mathrm{E}}^{i} w_{\mathrm{E}}(t, \boldsymbol{x})\right]+O\left(c^{-2}\right)
\end{aligned}
$$

- Having the structure of the GCRS potentials one can easily restore the the structure of the BCRS potentials...

Theorem: In any local system A the potentials $W^{+}{ }_{\alpha}^{A}\left(X^{\beta}\right)$ admit, everywhere outside body A, the following multipole expansion (harmonic gauge)

$$
\begin{aligned}
\stackrel{+}{W}^{A}(T, \boldsymbol{X})= & G \sum_{l \geq 0} \frac{(-)^{l}}{l!} \partial_{L}\left[R^{-1} \boldsymbol{M}_{L}^{A}(T \pm R / c)\right]+O(4) \\
\stackrel{+}{W}_{a}^{A}(T, \boldsymbol{X})= & -G \sum_{l \geq 1} \frac{(-)^{l}}{l!}\left\{\partial_{L-1}\left[R^{-1} \frac{d}{d T} \boldsymbol{M}_{a L-1}^{A}\right]+\right. \\
& \left.+\frac{l}{l+1} \epsilon_{a b c} \partial_{b L-1}\left[R^{-1} \boldsymbol{S}_{c L-1}^{A}\right]\right\}+O(2)
\end{aligned}
$$

with

$$
M_{L}^{A}(T \pm R / c) \equiv \frac{1}{2}\left[M_{L}^{A}(T+R / c)+M_{L}^{A}(T-R / c)\right]
$$

In the expansion of the exterior gravitational fields we face two families of multipole moments:

M_L : mass-moments
S_L: spin-moments
$M _L$ are equivalent to potentials coefficients (C_Im, S_Im)
M.Panhans: works on models for bodies with higher spin-moments
J.Meichsner: works on physical effects outside bodies with higher spin-moments

Instead of expansion in terms of spherical harmonics one works with expansions in terms of Cartesian symmetric and trace-free (STF) tensors

Let T_{L} be some Cartesian tensor; $\longrightarrow L=i_{1} \cdots i_{e}$

$$
\begin{aligned}
T_{(L)} \equiv T_{\left(i_{1} \ldots i_{l}\right)} & =\frac{1}{l!} \sum_{\pi} T_{i_{\pi(1)} \ldots i_{\pi(l)}} \\
\hat{T}_{L} & \equiv \operatorname{STF}\left(T_{L}\right)
\end{aligned}
$$

Example: $N_{i}=X^{i} / R ; N^{L} \equiv N_{i_{1}} \ldots N_{i_{l}}$

$$
R^{2} \hat{N}_{i j}=X^{i} X^{j}-\frac{1}{3} R^{2} \delta_{i j}
$$

One finds

$$
\begin{aligned}
& \partial_{L}\left(\frac{1}{R}\right)=\hat{\partial}_{L}\left(\frac{1}{R}\right)=(-1)^{l}(2 l-1)!!\frac{\hat{N}_{L}}{R^{l+1}} \\
& (2 l-1)!!=(2 l-1)(2 l-3) \ldots(2 \text { or } 1)
\end{aligned}
$$

Relativistic Celestial Mechanics

We present a new formalism for treating the general-relativistic celestial mechanics of systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies. This formalism is aimed at yielding a complete description, at the first post-Newtonian approximation level, of (i) the global dynamics of such N-body systems ("external problem"), (ii) the local gravitational structure of each body ("internal problem"), and, (iii) the way the external and the internal prob-
lems fit together ("theory of reference systems"). This formalism uses in a complementary manner $N+1$ coordinate charts (or "reference systems"): one "global" chart for describing the overall dynamics of the N bodies, and N "local" charts adapted to the separate description of the structure and environment of each body. The main tool which allows us to develop, in an elegant manner, a constructive theory of these $N+1$ reference systems is a systematic use of a particular "exponenial" parametrization of the metric tensor which has the effect of linearizing both the field equa-
ions, and the transformation laws under a change of reference system. This linearity allows a treat ment of the first post-Newtonian relativistic celestial mechanics which is, from a structural point of view, nearly as simple and transparent as its Newtonian analogue. Our scheme differs from previous attempts in several other respects: the structure of the stress-energy tensor is left completely open; the spatial coordinate grid (in each system) is fixed by algebraic conditions while a convenient
"gauge" flexibility is left open in the time coordinate [at the order $\delta t=O\left(c^{-4}\right)$], the gravitational "gauge" flexibility is left open in the time coordinate [at the order $\delta t=O\left(c^{-4}\right)$; the gravitational cently introduced by Blanchet and Damour, while the external gravitational field experienced by each body is expanded in terms of a particular new set of relativistic tidal moments. In this first paper we lay the foundations of our formalism, with special emphasis on the definition and properties of the N local reference systems, and on the general structure and transformation properties of the gravitational field. As an illustration of our approach we treat in detail the simple case where each
body can, in some approximation, be considered as generating a spherically symmetric gravitationa field. This "monopole truncation" leads us to a new (and, in our opinion, improved) derivation of the Lorentz-Droste-Einstein-Infeld-Hoffmann equations of motion. The detailed treatment of the relativistic motion of bodies endowed with arbitrary multipole structure will be the subject of subsequent publications.

One global and N local coordinate systems are used for the description of the gravitational N-body system

Equations derived from

- relating the local coordinates $\left(z^{a}(T)\right)$ with corresponding body

$$
M_{a}=\frac{d M_{a}}{d T}=\frac{d^{2} M_{a}}{d T^{2}}=0
$$

[$z^{a}: \mathbf{P N}$ center of mass for all times]

Local form

$$
0=\frac{d^{2} M_{a}}{d T^{2}}=\sum_{l \geq 0} \frac{1}{l!} M_{L} G_{L a}+\left(c^{-2}-\text { terms }\right)
$$

Since

$$
G_{a}=-\frac{d^{2} z^{a}}{d t^{2}}+\left.\bar{W}_{, a}\right|_{X^{a}=0}+\left(c^{-2}-\text { terms }\right)
$$

Global form

$$
\left.\frac{d^{2} z^{a}}{d t^{2}}=\bar{W}_{, a} \right\rvert\,+\left(c^{-2}-\mathrm{terms}\right)
$$

obtained fully to PN-order in terms of $M_{L}, S_{L} ; G_{L}, H_{L}$

Morupole limit without spins \longrightarrow EIH-equations of motion

Equations of translational motion

- The equations of translational motion (e.g. of a planet) in the BCRS

$$
\begin{aligned}
& g_{00}=-1+\frac{2}{c^{2}} w(t, \boldsymbol{x})-\frac{2}{c^{4}} w^{2}(t, \boldsymbol{x}), \\
& g_{0 i}=-\frac{4}{c^{3}} w^{i}(t, \boldsymbol{x}), \\
& g_{i j}=\delta_{i j}\left(1+\frac{2}{c^{2}} w(t, \boldsymbol{x})\right) .
\end{aligned}
$$

- The equations coincide with the well-known Einstein-Infeld-Hoffmann (EIH) equations in the corresponding limit

$$
\ddot{\boldsymbol{x}}_{A}=-\sum_{B \neq A} G M_{B} \frac{\boldsymbol{x}_{A}-\boldsymbol{x}_{B}}{\left|\boldsymbol{x}_{A}-\boldsymbol{x}_{B}\right|^{3}}+\frac{1}{c^{2}} \boldsymbol{F}(t)
$$

ElH equations rederived

- Assumption:
each body is a mass monopole in its own local reference system

$$
\mathscr{M}_{L}=0 \text { for } l \geq 1, \quad \mathscr{S}_{L}=0 \text { for } l \geq 1
$$

1. Transform the GCRS potentials into the BCRS potentials
2. derive $E O M$ from $M _a=0$

Details: DSX I. Output: the usual EIH EOM:

$$
\begin{aligned}
\ddot{x}_{A}= & -\sum_{B \neq A} \frac{G M_{B}}{r_{A B}^{2}} \mathbf{n}_{A B}\left[1+\frac{1}{c^{2}}\left(\mathbf{v}_{A}^{2}+2 \mathbf{v}_{B}^{2}-4 \mathbf{v}_{A} \cdot \mathbf{v}_{B}-\frac{3}{2}\left(\mathbf{n}_{A B} \cdot \mathbf{v}_{B}\right)^{2}\right]\right. \\
& \left.-4 \sum_{C \neq A} \frac{G M_{C}}{c^{2} r_{A C}}-\sum_{C \neq B} \frac{G M_{C}}{c^{2} r_{B C}}\left[1+\frac{1}{2} \frac{r_{A B}}{r_{C B}} \mathbf{n}_{A B} \cdot \mathbf{n}_{C B}\right]\right] \\
- & \frac{7}{2} \sum_{B \neq A} \sum_{C \neq B} \mathbf{n}_{B C} \frac{G^{2} M_{B} M_{C}}{c^{2} r_{A B} r_{B C}^{2}}+\sum_{B \neq A}\left(\mathbf{v}_{A}-\mathbf{v}_{B}\right) \frac{G M_{B}}{c^{2} r_{A B}^{2}}\left(4 \mathbf{n}_{A B} \cdot \mathbf{v}_{A}-3 \mathbf{n}_{A B} \cdot \mathbf{v}_{B}\right)
\end{aligned}
$$

Dynamically and kinematically non-rotating reference systems

Kinematically and dynamically non-rotating

- GCRS Potentials $W(T, \boldsymbol{X})=W_{E}(T, \boldsymbol{X})+Q_{a}(T) X^{a}+W_{T}(T, \boldsymbol{X})$,

$$
W^{a}(T, \boldsymbol{X})=W_{E}^{a}(T, \boldsymbol{X})+\frac{1}{2} \varepsilon_{a b c} C_{b}(T) X^{c}+W_{T}^{a}(T, \boldsymbol{X})
$$

- Coordinate transformations BCRS-GCRS:

$$
\begin{gathered}
T=t-\frac{1}{c^{2}}\left(A(t)+v_{E}^{i} r_{E}^{i}\right)+\frac{1}{c^{4}}\left(B(t)+B^{i}(t) r_{E}^{i}+B^{i j}(t) r_{E}^{i} r_{E}^{j}+C(t, \boldsymbol{x})\right)+O\left(c^{-5}\right), \\
X^{a}=\underline{R_{i}^{a}(t)}\left(r_{E}^{i}+\frac{1}{c^{2}}\left(\frac{1}{2} v_{E}^{i} v_{E}^{j} r_{E}^{j}+D^{i j}(t) r_{E}^{j}+D^{i j k}(t) r_{E}^{j} r_{E}^{k}\right)\right)+O\left(c^{-4}\right) \\
r_{E}^{i}=x^{i}-x_{E}^{i}(t)
\end{gathered}
$$

$x_{E}^{i}(t)$ and $v_{E}^{i}(t)$ are the BCRS position and velocity of the Earth $R_{i}^{a}(t)$ is an orthogonal (rotation) matrix,

Kinematically and dynamically non-rotating

$C_{a}(T)$ defines rotational motion of the spatial axes of GCRS

$$
C_{a}(T)=0 \quad \Rightarrow
$$

no Coriolis forces in the equations of motion of a test particle in the GCRS; dynamically non-rotating GCRS
$\dot{R}_{i}^{a}(t)=0 \quad \Rightarrow$ No spatial rotation between GCRS and BCRS; kinematically non-rotating GCRS

- The standard choice for astronomical data processing is the kinematically non-rotating GCRS: $\quad R_{i}^{a} \equiv \delta_{i a}$

Thus: the orientation of spatial GCRS axes is determined by the orientation of BCRS axes (i.e., by the ICRF)

- Coriolis forces in the GCRS equations of motion, e.g. for satellites

$$
\begin{array}{lll}
& C_{a}=-\frac{1}{2} c^{2} R_{a}^{i}\left(\Omega_{G P}^{i}+\Omega_{L T P}^{i}+\Omega_{T P}^{i}\right), \\
\text { geodetic } \quad \Omega_{G P}^{i}=-\frac{3}{2} c^{-2} \varepsilon_{i j k} v_{E}^{j} \bar{w}_{k}\left(\boldsymbol{x}_{E}\right) & 1.92^{\prime \prime} / \mathrm{cy}+0.150 \mathrm{mas} \\
\text { Lense-Thirring } & \Omega_{L T P}^{i}=-2 c^{-2} \varepsilon_{i j k} \bar{w}^{j, k}\left(\boldsymbol{x}_{E}\right) & 2 \text { mas/cy } \\
\text { Thomas } \quad & \Omega_{T P}^{i}=-\frac{1}{2} c^{-2} \varepsilon_{i j k} v_{E}^{j} R_{a}^{k} Q_{a} & 0.004 \mu \mathrm{as} / \mathrm{cy}
\end{array}
$$

The problem of inertia in GRT

Inertial frames

in Newton's theory inertial frames are determined by absolute space

Leon Foucault, 1851; Pantheon, Paris

A modern version of the Foucault pendulum

> a laser gyro

$$
\Delta v_{\text {spapeac }}=\frac{4 \mathbf{A} \cdot \Omega}{\lambda P}
$$

The laser-gyro in Wettzell, Germany

Dragging of inertial frames

In GRT locally inertial systems rotate with respect to the fixed stars

A torque free gyro is dragged by the rotating Earth
(Lense-Thirring effect)

Lense-Thirring effect in the motion of satellites: precession of orbit in space

Frame dragging

Experimentally detected in the motion of satellites by I.Ciufolini

Lageos I (II)
nodal drift:
$20 \mu \mathrm{as} / \mathrm{rev}$.

Ignazio Ciufolini

The geodetic precession

A torque-free gyro, moving with the Earth precesses w.r.t. the quasar-sky because of its motion about the Sun.

This geodetic precession amounts to

$$
\Omega_{\mathrm{GF}}=\left(3 / 2 \mathrm{c}^{2}\right) \mathbf{v}_{\mathrm{E}} \times \nabla \mathrm{U}_{\mathrm{ext}} \approx 1.98 \text { "/cen. }
$$

If the Earth is considered in rotation w.r.t. the GCRS the geodetic precession/nutation will be in the PN-matrix (even for zero ellipticity!)

For more details on ST reference systems see:

Contents

1 Introduction1
1.1 Astronomical Geodetic Reference Systems 1
1.1. The Problem of Time 1
1.1.2 Various Space-Time Reference Systems 5
1.1.3 Classical Apparent, True, and Mean Places 7
1.2 Astronomical Geodetic Applications 9
1.2.1 Navigation 9
1.2.2 Global Geodynamics and the System Earth 10
2 Time. 11
2.1 Stability of Oscillators 11
2.2 Bias and Drift 15
2.3 Quartz and Atomic Clocks 17
2.4 Cesium Clocks 21
2.5 Rubidium Clocks 21
2.6 H-Maser. 22
2.7 Fountain Clocks 24
2.8 Optical Clocks 24
2.9 Application of Highly Precise Clocks 27
2.10 Relativity and the Metric Tensor 28
2.11 Lorentz Transformation 32
2.12 Geocentric Timescales TCG, TT, TAI, and UTC 34
2.13 Time Zones 41
2.14 Julian Date 41
2.15 Barycentric Timescales TCB, $\mathrm{T}_{\text {eph }}$, and TDB 43
2.16 Fairhead-Bretagnon Series 44
2.17 Problems of Time Dissemination 45
2.18 Time Dissemination by Means of Satellites. 46
3 Space-Time 49
3.1 Reference Systems and Frame 49
3.2 Canonical Barycentric Metric 53
3.3 Equations of Motion of Astronomical Bodies 55
4 Barycentric Dynamical Reference System 61 61
4.1 Concepts
4.2 Observational Methods 61
4.2.1 Optical Ground-Based Astrometry 61
4.2.2 Lunar Laser Ranging 62
4.2.3 Radar Measurements to Planets 68
4.2.4 Radar Tracking to Spacecraft 69
4.3 Solar System Ephemerides 70
4.3.1 Numerical Ephemerides 70
4.3.2 Semianalytical Ephemerides 85
5 Classical Astronomical Coordinates 91
5.1 Apparent Motion of Stars and Sun 91
5.2 Spatial Coordinates 94
5.2.1 Labels on the Celestial Sphere 97
5.2.2 Cartesian and Spherical Coordinates 100
5.2.3 Horizon Coordinates 101
5.2.4 Equatorial Coordinates of the First Kind 101
5.2.5 Equatorial Coordinates of the Second Kind 102
5.2.6 Ecliptic Coordinates 103
5.3 Relations Between Astronomical Coordinate 105
5.3.1 Relations between (A, z) and (h, δ) 105
5.3.2 Relations between (h, δ) and (α, δ) 107
5.3.3 Rotational Matrices 108
5.3.4 Relations Between (α, δ) and (λ, β) 11
5.4 Sidereal Times 111
6 Astrometry 115
6.1 Refraction 115
6.1.1 The Model of Saastamoinen 117
6.1.2 Refraction Corrections as Integrals 118
6.1.3 Applying Refraction Corrections 122
6.2 Parallax 123
6.2.1 Annual Parallax 123
6.2.2 Geocentric Parallax 127
6.3 Aberration 128
6.3.1 Annual Aberration 32
6.3.2 Diurnal Aberration 132
6.4 Space Motion of Stars
135
6.5 Astronomical Precession
138
138
6.5.1 Approximate Treatment of Precession
6.6 Astronomical Nutation 140
6.7 Apparent Places 144
6.8 High-Precision Astrometry 144
6.8.1 Gravitational Light Deflection 144
6.8.2 The Klioner Formalism
155
7 Celestial Reference System
7.1 Concepts 155
7.1.1 Barycentric Celestial Reference System 155
7.1.2 Geocentric Celestial Reference System 156
7.2 Observational Methods 160
7.2.1 Very Long Baseline Interferometry 160
7.2.2 Astrometric Space Missions 164
7.3 Classical Celestial Reference System 168
7.3.1 Fundamental Catalogs FK3, FK4, and FK5 169
7.3.2 Astrographic Catalog and Derived Catalogs 170
7.3.3 Hipparcos and Tycho Catalogs. 170
7.3.4 2MASS 171
7.3.5 Schmidt Plate Survey Catalogs 171
7.3.6 UCAC 172
7.4 International Celestial Reference System 172
7.4.1 Orientation of the ICRS 173
7.4.2 Realization of the ICRF in the Optical 174
8 Terrestrial Reference System 175
8.1 Concepts 175
8.1.1 Local Terrestrial Systems 175
8.1.2 Global Terrestrial Systems 177
8.2 Observational Methods 177
8.2.1 Classical Methods 177
8.2.2 Satellite Laser Ranging 181
8.2.3 Global Positioning System 183
8.2.4 GLONASS 187
8.2.5 DORIS 188
8.2.6 GALILEO 188
8.2.7 Gyroscopes 189
8.3 International Terrestrial Reference System 192
9 From the GCRS to the ITRS 197
9.1 Polar Motion 197
9.2 Universal Time, UT1, and Length-of-Day Variations 202
9.2.1 Universal Time. 203
9.2.2 UT1 and Its Variations 206
9.3 Celestial Intermediate Pole 207
9.3.1 Instantaneous Rotation Pole. 208
9.3.2 Definition of the CIP 211
9.3.3 Motion of the CIP in the GCRS; CP Offsets 214
9.3.4 IAU 2000 Precession-Nutation Model 215
9.3.5 Fundamental Nutation Angles 219
9.3.6 Frame Bias Matrix 221
The Series by Capitaine and Wallace 22
9.3.8 Motion of the CIP in the ITRS 222
9.4 CIO, TIO, ERA, and GAST 226
9.4.1 Celestial Intermediate Origin 229
.4.2 Terrestrial Intermediate Origin.... 229
9.4.3 Earth Rotation Angle θ and GAST 229
9.5 Transformations from the GCRS to the ITRS
231
231
9.5.2 CIO-Based Transformation 232
10 omical Software - Yearboo 235
10.1 Software Implementations 235
10.1.1 SOFA 235
0.1.2 NOVAS 236
10.2 Astronomical Yearbooks 236
10.2.1 APFS 23
10.2.2 Astronomical Almanac 237
11 Astronomical Constants 239
1.1 Natural Constants 239
11.2 Defined and Measurable Natural Constants 240
11.3 Problems Related with Natural Units 240
11.4 Body Constants and Framework 241
11.5 Initial Values and Model 242
11.6 Current Best Estimates
References 245
List of Acronyms 257
A: Solutions to Exercises 261
B: Description of the AstroRef Package 277
B. 1 General Information 277
B. 2 Download. 277
B. 3 Installing and Using the Package 78
B. 4 Function Reference
B. 4 Function Reference
278
B.4.1 Overview 79
B.4.2 Auxiliary Functions
B.4.2 Auxiliary Functions 308
B. 5 Package Variable311

PLUS:

a large number of

- solved Exercises
- Maple programs

