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What are Space-Time Reference Systems (RS)?

Science talks about events (e.g., observations):

something that happens during a short interval of time
in some small volume of space

Both space and time are
considered to be continous

combined they are described
by a ST manifold



A Space-Time RS basically is a ST coordinate system (t,x)
describing the ST position of events in a certain
part of space-time

In practice such a coordinate system has to be realized in 
nature with certain observations; the realization is then called
the corresponding

Reference Frame



Newton‘s space and
time



In Newton‘s ST things are quite simple:

Time is absolute as is Space ->

there exists a class of preferred inertial coordinates
(t,x) that have direct physical meaning, i.e.,

observables can be obtained directly from the
coordinate picture of the physical system.

Example:             ∆τ = ∆t

(proper) time                                 coordinate time
indicated by some clock





Newton‘s absolute space



Newtonian astrometry

physically preferred 
global inertial
coordinates

observables are 
directly related to 
the inertial 
coordinates



Example: observed angle  θ between two incident
light-rays 1 and 2 

x (t) = x + c n (t – t  )
i ii
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cos θ = n n
1
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Is Newton‘s conception of Time and Space in accordance
with nature? NO!



The reason for that is related with properties
of light propagation upon which time
measurements are based

Presently: The (SI) second is the duration of 

9 192 631 770 

periods of radiation that corresponds to a certain
transition in the Cs-133 atom



Principle of the constancy of the velocity of light
in vacuum :

The light velocity is independent upon the state of 
motion of the light source, frequency and 
polarization

c‘ = c + k v



If violated:

up to 5 images could be
seen of a star in a binary
system at the same time





Michelson und Morley (1887):

the value of c also does not
depend upon the velocity of 
the observer



The famous Michelson & Morley 
experiment 1887

Cleveland, Ohio

turning the apparatus
did not change the
interference pattern
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The moving light-clock
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The moving light-clock

same value for c as for the clock at rest



We get:

a moving clock appears to be slowed
down
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It turns out that the concept of a ST metric tensor
is of greatest value



GRT: metric as fundamental object

• Pythagorean theorem in 2-dimensional Euclidean space
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Metric tensor: special relativity

• special relativity, inertial coordinates 

0( , ) ( , , , )ix x x ct x y zµ ≡ =

• The constancy of the velocity of light in inertial coordinates

2 2 2 2ds c dt d= − + x

2 2 2d c dt=x

can be expressed as  where
2 0ds =

00

0

1,

0,

diag(1,1,1).
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Light rays are
null geodesics



Moreover, from the metric one immediately gets the
observed time interval by

that agrees with the formula above

coordinate time
interval



The gravitational field can also be described with the
ST metric tensor

The reason is the Equivalence Principle (EP)



WEP:

Apart from tidal forces
all uncharged test 
bodies fall at the same
rate

inertial mass = heavy mass



WEP: pendelum measurements

Different materials –
same swinging periods (l = const.)

Galileo Galilei (1590-1638) 0.02
Isaac Newton (1680) 0.001
Friedrich Bessel (1830) 0.000017

Friedrich Wilhelm Bessel
(1784-1846)

relative accuracy



Earth and
Moon in
free-fall towards
Sun (LLR)



WEP: Torsion pendulums

Loránd Eötvös (1848-1919)

Eötvös (1909) 5×10-9

Braginsky-Panov (1972) 10-12

Adelberger (2003) 5×10-13



A.Einstein:

Gravity can be understood as effect of space-time curvature



Gravity
as phenomenon
of space-time
curvature

Precondition:
Equivalence Principle



Metric tensor with UEinstein‘s theory of gravity

To lowest order the gravitational potential U
enters the metric tensor

The Newtonian field equation (Poisson equation)

is contained in Einstein‘s field equations

(*)

matter variables



Einstein‘s field equations determine the metric tensor
up to four degrees of freedom that fix the coordinate system
(gauge freedom)

In the following only the so-called

harmonic gauge

will be used (generalized Cartesian inertial coordinates)



A ST reference system if determined

by

• Origin and spatial orientation of spatial coordinates

• Form of the metric tensor



One consequence of U in the metric:
gravitational redshift:

If a light signal propagates in a gravitational
field from below to above its
frequency appears to be reduced,

i.e., redshifted

Since the SI second is defined
by the duration of a certain number
of oscillations of a certain radiation
resulting from Cs-133 atoms

→ the rate of a clock depends upon its
location in the gravity field





GPS:

24 satellites
in 20 000 km
height

emitting
time signals



GPS  accuracies

Positions:  about 30 m

DGPS: cm – mm

at highest accuracies the action of gravity
has to be taken into account



Laser-cooled Cs - fountain
clocks: 
∆f/ f ≈≈≈≈ 10-15

NIST Ytterbium optical clock
at 10µK in optical lattice

10        !

In the near future:
atomic clocks might be employed as gravimeters

(Age of universe: 4 x 10   s)
17

-18



(*)



The timescale TT: it should differ from TCG by a constant
Rate. Original idea: this rate should agree with that of a 
clock on the geoid. However: geoid not known to 
sufficient precision. 



The timescale TAI: practical realization of TT



TT, TAI and UTC

TT = TAI + 32.184 s

TAI = UTC + N s

leap seconds



ST reference systems with higher accuracy

Usually for applications within our solar system
the (first) post-Newtonian approximation to Einstein‘s
theory of gravity (in harmonic coordinates) is employed





w: gravito-electric potential, generalizes U

w  : gravito-magnetic potential (Lense-Thirring effects)
i
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Canonical form of the PN harmonic metric



Celestial RS: quasi-inertial, no-rotation w.r.t. remote
Astronomical objects (quasars)

We have to distinguish a

BCRS (Barycentric Celestial Reference System)

from a 

GCRS (Geocentric Celestial Reference Sytem)

For certain applications we need even more CRS



Metric tensor and reference systems

• In relativistic astronomy the

• BCRS (Barycentric Celestial Reference System)

• GCRS (Geocentric Celestial Reference System)

• Local reference system of an observer

play an important role.

• All these reference systems are defined by 

the form of the corresponding metric tensor.

BCRS

GCRS

Local RS
of an observer



But: the RS are just coordinate systems that can be chosen
in many ways (they have no physical meaning)

In addition to the RS we need theories for the

• observables
• associated techniques

• signal propagation



no physically
preferred coordinates

observables have 
to be computed as
coordinate 
independent 
quantities

Relativistic theory of light 
propagation
(relativistic astrometry)



Reference systems, frames and observables in GRT

Coordinate-dependent
parameters

Relativistic reference 
system(s)

Equations of
signal

propagation

Astronomical
reference

frames

Observational 
data

Relativistic
equations
of motion

Definition of
observables

Relativistic
models 

of observables



Relativistic theory of observables: examples

• proper time interval dτ: obtained directly from the metric
• (ds along the clock‘s worldline)

• observed angle between two incident light rays 1 and 2



ST reference system



word-line
of observer



light-ray 1



light-ray 2



3 ST tangent vectors:

t to observer‘s
world-line

k1 and k2 to the two
light-rays



3-space as experienced by
observer



3-space as experienced by
observer; k:   projection into 3-space

_

Projection, scalar-product
and norm involve the
metric tensor



Relativistic metrology

21-m VLBI antenna
Wettzell,  Germany



GPS

SLR

LLR



Astrometry: accuracies



Gravitational light deflection

with Sun

without Sun



equations of light propagation

• The equations of light propagation 
in the BCRS
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the “Newtonian” straight line:
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Gravitational light deflection

3 ″1051 ′2533Neptune

4 ″871 ′2080Uranus

46 ″9517 °5780Saturn

152 ″24090 °16270Jupiter

25 ′116Mars

5 °26Moon

125 °574Earth

4.5 °493Venus

9 ′83(Mercury)

53′11180 °1.75×106Sun

ppNQuadrupoleMonopolebody maxψ maxψ maxψ

• The principal effects due to the major bodies of the solar system in µas
• The maximal angular distance to the bodies where the effect is still >1 µas



Gravitational light deflection: moons, minor planets

• A body of mean density ρ produces a light deflection exceeding δ
if its radius:

1/ 2 1/ 2

3
650 km

1 g/cm 1µas
R

ρ δ
−

   
≥ × ×   
   

Ganymede 35
Titan 32
Io 30
Callisto 28
Triton 20
Europe 19

Pluto 7
Charon 4
Titania 3
Oberon 3
Iapetus 2
Rea 2
Dione 1
Ariel 1
Umbriel 1
Ceres 1



Gravitational light deflection:



The Barycentric Celestial Reference System

• The BCRS is suitable to model processes in the whole solar system
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Barycentric: orientation of spatial axes

IAU-GA 2006, Prag:

orientation of spatial BCRS axes given by the ICRF



Geocentric Celestial Reference System

The GCRS is adopted by the International Astronomical Union (2000)
to model physical processes in the vicinity of the Earth:

A: The gravitational field of external bodies is represented only in the form of 
a relativistic tidal potential.

B: The internal gravitational field of the Earth coincides with the 
gravitational field of a corresponding isolated Earth.
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self-part coming from the Earth itself



External part coming from inertial effects (linear term)
and other bodies (quadratic and higher order terms)





• The BCRS and GCRS potentials of the central body are simply related:

• Having the structure of the GCRS potentials one can easily restore the
the structure of the BCRS potentials…

a
iR





In the expansion of the exterior gravitational fields we face two families
of multipole moments:

M_L : mass-moments
S_L:  spin-moments

M_L are equivalent to potentials coefficients (C_lm, S_lm)

M.Panhans: works on models for bodies with higher spin-moments
J.Meichsner: works on physical effects outside bodies with higher spin-moments



Instead of expansion in terms of spherical harmonics one works with
expansions in terms of Cartesian symmetric and trace-free (STF) tensors



Relativistic Celestial Mechanics

For the gravitational
N body system
one introduces
N+1 RS







Equations of translational motion

• The equations of translational motion 
(e.g. of a planet) in the BCRS
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• The equations coincide with the well-known Einstein-Infeld-Hoffmann (EIH)
equations in the corresponding limit
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EIH equations rederived

• Assumption: 
each body is a mass monopole in its own local reference system

1. Transform the GCRS potentials into the BCRS potentials
2. derive EOM from M_a = 0

Details: DSX I. Output: the usual EIH EOM:

&&Ax



Dynamically and kinematically
non-rotating reference systems



Kinematically and dynamically non-rotating

• GCRS Potentials

• Coordinate transformations BCRS-GCRS:
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( )aC T defines rotational motion of the spatial axes of GCRS

( ) 0aC T = ⇒
no Coriolis forces in the equations of motion 
of a test particle in the GCRS;
dynamically non-rotating GCRS

( ) 0a
iR t =& ⇒ No spatial rotation between GCRS and BCRS;

kinematically non-rotating GCRS

Kinematically and dynamically non-rotating



• The standard choice for astronomical data processing is
the kinematically non-rotating GCRS: with    a
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1.92″/cy + 0.150 mas
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0.004 µas/cy

• Coriolis forces in the GCRS equations of motion, e.g. for satellites

Thus: the orientation of spatial GCRS axes is determined by
the orientation of BCRS axes (i.e., by the ICRF)



The problem of inertia in GRT



Das Problem

in Newton‘s theory inertial frames are determined by absolute
space

Inertial frames



Leon Foucault, 1851; Pantheon, Paris



A modern version of the Foucault pendulum

a laser gyro



The laser-gyro in Wettzell, Germany

laser excitation

Cerodur groundplate 16 m2

beam recombiner



In GRT locally inertial systems rotate with respect to the
fixed stars

A torque free gyro is dragged by the
rotating Earth

(Lense-Thirring effect)

Dragging of inertial frames



Lense-Thirring effect in the motion of satellites:
precession of orbit in space



Frame dragging

Experimentally detected in the motion of satellites
by I.Ciufolini

Ignazio Ciufolini

Lageos I (II)

nodal drift:
20 µas/rev.



The geodetic precession

A torque-free gyro, moving with the Earth precesses
w.r.t. the quasar-sky because of its motion about the Sun.

This geodetic precession amounts to

Ω = (3/2c ) v  x ∇∇∇∇U      ≈ 1.98 ‘‘/cen.2
GP E ext

If the Earth is considered in rotation w.r.t. the GCRS 
the geodetic precession/nutation
will be in the PN-matrix (even for zero ellipticity!)



For more details on ST reference systems see:









PLUS:

a large number of

- solved Exercises

- Maple programs

FIN


