ON THE GALACTIC ABERRATION CONSTANT

Z. $MALKIN^{1,2}$

- ¹ Pulkovo Observatory, St. Petersburg, Russia
- ² St. Petersburg State University, St. Petersburg, Russia e-mail: malkin@gao.spb.ru

ABSTRACT. In this work, we analyzed all available determinations of the Galactic rotation parameters R_0 and Ω_0 made during last 10 years to derive the most probable value of the Galactic aberration constant $A = R_0 \Omega_0^2/c$. We used several statistical methods to obtain reliable estimates of R_0 and Ω_0 and their realistic errors. In result, we obtained the value of $A = 5.0 \pm 0.3~\mu \text{as/yr}$ as the current best estimate of the GA constant. We suggest that the proposed value of the GA constant can be safely used in practice during coming years.

1. INTRODUCTION

Galactic aberration (GA) is a small effect in proper motion of about 5 μ as/yr already noticeable in VLBI and other highly-accurate astrometric observations. However accounting for this effect during data processing faces difficulty caused by the uncertainty in the GA constant $A = R_0 \Omega_0^2/c$, where R_0 is the Galactocentric distance of the Sun, Ω_0 is the angular velocity of circular rotation of the Sun around the Galactic center, c is speed of light.

The value of the GA constant can be derived either using the stellar astronomy methods or VLBI observations of the extragalactic radio sources. It seems that the former provide more accurate results, while the latter are still somewhat contradictory. So, we use the results of the observations of Galactic objects to improve A. Our previous estimate of the GA constant (Malkin 2011) yields the values of $R_0 = 8.2 \text{ kpc}$, $\Omega_0 = 29.5 \text{ km s}^{-1} \text{ kpc}^{-1}$, and $A = 5.02 \mu \text{as/yr}$. This work is performed to check and improve if necessary this estimate taking into account more recent measurements of the Galactic rotation parameters.

2. DERIVING THE BEST VALUE OF THE GA CONSTANT

In this work, we have used 35 R_0 measurements and 30 Ω_0 measurements made during last 10 years. They are listed in Table 1. We consider the results obtained during last 5 years as the most reliable, especially for R_0 estimates, for which the direct methods, such as measurements of the parallax or stellar orbits around the massive black hole, become routine starting from 2008. So, the results published in 2008–2013 were used to derive the final estimate of the GA constant. The results of 2003–2007 were processed for control of its stability.

We have applied several statistical techniques mostly used in physics and metrology to these data, as described in Malkin (2012, 2013). Results of computation are presented in Table 2. The first line corresponds to the best current estimates of the GA constant, in our opinion. The second result obtained by using only direct R_0 measurements is practically the same. It shows that the results of the direct determinations of R_0 does not substantially differ (in average) from other estimates. The results obtained with all measurements of the Galactic rotation parameters made during last 10 years are given in the third line. We think it is less reliable than the first two ones. However, it allows one to get an impression about the stability of the GA constant in time.

For comparison, the standard weighted mean estimate yields for the main variant corresponding to the first line of Table 2 (data interval of 2008–2013, all R_0 measurements) $R_0 = 8.03 \pm 0.06$ kpc, $\Omega_0 = 29.23 \pm 0.19$ km s⁻¹ kpc⁻¹, $A = 4.83 \pm 0.07$ μ as/yr. Precision of these estimates seems to be too optimistic. Using combined estimate of different statistical techniques as suggested by Malkin (2012) provides more reliable A estimate with a realistic uncertainty. Further analysis has shown that error in Ω_0 prevails in the A error. Besides, published Ω_0 results are not statistically consistent, unlike R_0 measurements. So, more attention is needed to compute the best estimate of Ω_0 .

R_0	σ	Reference	Ω_0	σ	Reference
8.3	0.3	Gerasimenko, 2004	-27.6	1.7	Bedin, et al., 2003
7.7	0.15	Babusiaux & Gilmore, 2005	32.8	1.2	Olling & Denhen, 2003
8.01	0.44	Avedisova, 2005	25.3	2.6	Kalirai, et al., 2004
8.7	0.6	Groenewegen & Blommaert, 2005	28.0	0.6	Bobylev, 2004
7.2	0.3	Bica, et al., 2006	29.45	0.15	Reid & Brunthaler, 2004
7.52	0.36	Nishiyama, et al. 2006	29.96	1.29	Zhu, 2006
8.1	0.7	Shen & Zhu, 2007	26.0	0.3	Bobylev et al., 2007
7.4	0.3	Bobylev, et al., 2007	30.7	1.0	Lepine, et al., 2008
7.94	0.45	Groenewegen, et al., 2008	27.67	0.61	Bobylev, et al., 2008
8.16 *	0.5	Ghez, et al., 2008	28.06	1.04	Ghez, et al., 2008
8.07 *	0.35	Trippe, et al. 2008	30.2	1.0	Dambis, 2009
8.33 *	0.35	Gillessen, et al., 2009	30.3	0.9	Reid, et al., 2009a
8.7	0.5	Vanhollebeke, et al., 2009	29.8	1.0	Bovy, et al., 2009
7.58	0.40	Dambis, 2009	31	1	Melnik & Dambis, 2009
8.4 *	0.6	Reid, et al., 2009	27.27	1.04	Dambis, 2010
7.75	0.5	Majaess, et al., 2009	30.65	0.85	Macmillan & Binney, 2010
8.24	0.43	Matsunaga, et al., 2009	31.0	1.2	Bobylev & Bajkova, 2010
7.9 *	0.75	Reid, et al., 2009	27.3	0.8	Ando, et al., 2011
7.7	0.4	Dambis, 2010	28.7	1.3	Nagayama, et al., 2011
8.1	0.6	Majaess, 2010	30.4	1.5	Stepanishchev & Bobylev, 2011
8.3 *	1.1	Sato, et al., 2010	31.5	0.9	Bobylev & Bajkova, 2011
7.80 *	0.26	Ando, et al., 2011	29.27	1.04	Liu & Zhu, 2011
8.29	0.16	McMillan, 2011	28.8	0.8	Bajkova & Bobylev, 2012
7.9	0.36	Matsunaga, et al., 2011	27.5	$0.5_{-0.4}$	Bobylev & Bajkova, 2012
8.03	0.70	Liu & Zhu, 2011	28.78	1.04	Schoenrich, 2012
8.54	0.42	Pietrukowicz, et al., 2012	31.09	0.78	Honma, et al., 2012
7.7 *	0.4	Morris, et al., 2012	31.63	3.31	Bobylev, 2013
8.27	0.29	Schoenrich, 2012	28	2	Nagayama, et al., 2013
8.05 *	0.45	Honma, et al., 2012	29.0	1.0	Reid, 2013
7.51	0.23	Bobylev, 2013	32.38	1.04	Bobylev & Bajkova, 2013
8.24	0.43	Matsunaga, et al., 2013			
8.38 *	0.18	Reid, 2013			
8.08	0.44	Zhu & Shen, 2013			
8.2	0.35	Nataf, et al., 2013			
7.4	0.21	Francis & Anderson, 2013			

Table 1: R_0 [kpc] and Ω_0 [km s⁻¹ kpc⁻¹] estimates. Direct R_0 measurements are marked with asterisk.

Interval	R_0 data	R_0	Ω_0	\overline{A}
2008-2013	all	8.06 ± 0.12	29.59 ± 0.75	4.96 ± 0.26
2008 – 2013	direct	8.14 ± 0.15	29.59 ± 0.75	5.01 ± 0.27
2003 - 2013	all	8.00 ± 0.14	29.28 ± 0.66	4.83 ± 0.24

Table 2: Results of computation of R_0 [kpc], Ω_0 [km s⁻¹ kpc⁻¹], and A [μ as/yr.].

3. CONCLUSION

We derived the current best estimate of the GA constant using all available measurements of the Galactic rotation parameters made during last 5 years, which yields the result $A=4.96\pm0.26~\mu as/yr$. For practical applications we suggest to use the value $A=5~\mu as/yr$. Using this value of the GA constant allows one to eliminate about 90% of the GA effect. Remaining uncertainty in proper motion of about 0.5 $\mu as/yr$ is negligible nowadays. Thus the proposed value of the GA constant can be safely used in practice during coming years, presumably for at least the nearest decade, until new VLBI and space observations provide substantially better result.

Acknowledgements. The author is grateful to the organizers of the conference for the travel support.

4. REFERENCES

Malkin, Z.M., 2011, Astron. Rep. 55, pp. 810–815.

Malkin, Z., 2012, arXiv:1202.6128.

Malkin, Z.M., 2013, Astron. Rep. 57, pp. 882–887.