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ABSTRACT. We develop a method to construct the reference system (RS) of a local observer which
is based on the transformation from the instant normal coordinates to the Fermi and optical ones. The
main advantage of our approach is due to a direct relation of the optical coordinates with observable
positions of distant objects on the celestial sphere. The method is applied to a construction of local
observer RS in a weak field within the linearized gravitation theory.

1. INTRODUCTION

Outstanding perspectives of microarcsecond astrometry connected with challenging space projects
such as GAIA mission, demand to construct the reference systems (RS) which would be accurate enough
to deal with fine relativistic effects. On the other hand these RS must be convenient and clearly un-
derstandable as much as possible. The IAU Resolutions concerning the reference frames, adopted by
the XXIVth International Astronomical Union General Assembly focus mainly on harmonic coordinates,
and this direction is most developed (see Soffel et al., 2003). Harmonic coordinates are convenient to
be used in the barycentric system for limited ensemble of masses with asymptotically flat metric and
the space origin at the barycentre of the ensemble of bodies. In this barycentric system we can easily
fix the coordinates if they are quasi-Cartesian and the metric tensor is pseudo-Euclidian at the infinity.
We remind that the harmonicity conditions have the form of partial differential equations and for unique
determination of harmonic coordinates additional conditions are required. For the case of geocentric co-
ordinates or coordinates associated with a satellite this choice looks something artificial. It is not linked
with any physical or geometrical preferences, but just with the method of solving the Einstein equations
for metric tensor or with the particular choice of transformations to the barycentric system. Also, a ge-
netic relationship of harmonic coordinates with Einstein’s equation requires additional efforts (see, e.g.,
Klioner & Soffel, 2000; Klioner, 2003) when the General Relativity is compared with alternative theories
of gravity.

Harmonic coordinates are not observable and are not associated with the observations. Therefore, their
use does not solve directly the problem of the interpretation of observations. On the other hand, there are
the well known relativistic reference frames that are based on invariant interrelations characterizing the
observables. These RS are thus connected with results of observations in a direct way. Such relations are
determined correctly for any kind of metric, despite the kind of field equations, and they are independent
on a physical model of the reference body. As an example of such systems we can remind the local
observer’s frame, based on the Riemannian normal coordinates (RNC), Fermi coordinates (FC) or on
optical ones (OC) (Synge, 1960). Reference systems of the local observer are based on the geodesics
lines and have a clear geometric interpretation. The Fermi coordinates are the most direct relativistic
generalization of the reference frame of the moving observer in Newtonian mechanics. At the same time,
the optical coordinates that operate directly with the position of an object on the celestial sphere, are
most closely associated with the observations. Transition to the optical coordinates can be treated as an
important step in solving the problem of observables. Fermi coordinates are better known (see e.g. Ashby
& Bertotti, 1986; Fukushima, 1988; Aleksandrov et al., 1990; Marzlin, 1994; Nesterov A. 1999), while the
optical coordinates have not been given due attention. However, in recent years some version of optical
coordinates is used in cosmology under the name “observational coordinates” (Clarkson & Maartens,
2010). Note also a possibility of introducing a generalized EC and OC, measured from the surface of the
Earth, instead from its center (Zhdanov, 1994).

12



Here we demonstrate how the developed mathematical apparatus associated with geodesics, their
deviation, and parallel transport is used to construct coordinate transformations to FC and OC, and
to find the metric in these coordinates for an arbitrary weak field. Note the ideological affinity of our
approach to work by Nesterov (1999). However, we achieve a significant simplification by transition from
integration of the curvature tensor to the integrals of the metric perturbations.

2. BASIC RELATIONS IN GENERAL

Suppose that the observer is moving along the world line xµ
c (τ), τ is his proper time, and eα(µ) is

his proper reference frame (here, the index in parentheses indicates the number of the vector). Vector

eα(0) coincides with observer’s four-velocity, i.e.
dxα

c

dτ
= uα = eα(0). Proper frame is transported along the

observer’s world line as follows (e.g. Misner, Thorne and Wheeler, 1973):

Deα(µ)

∂τ
= Ωα

βe
β

(µ). (1)

Here Ωαβ = aαuβ−uαaβ+εαβγδu
γωδ is the four-tensor of observer’s rotation; aα his four-acceleration,

ωβ angular velocity.
Consider geodesic xµ (τ, s) parameterized with canonical parameter s, which passes through the ob-

served point and xµ (τ, 0) = xµ
c (τ). Let v

α be a tangential ort to this geodesic at the point xµ
c (τ). Then

(instant) RNK of the point xµ (τ, s) adapted to the tetrad eα(µ) and originated at xµ
c (τ) are yµ = vµs,

where vµ = e
(µ)
α vα. So, to find formulae for the transformation to normal coordinates, one needs to

construct the general solution xµ (τ, s) = Xµ (xν
c (τ) , v

αs) of Cauchy problem for the geodesic equation

d2xµ

ds2
+ Γµ

νλ

dxν

ds

dxλ

ds
= 0. (2)

In the case of an analytic metric this solution is known in a form of the covariant Taylor series (see
Pyragas et al., 1995). Also, in the weak-field approximation it is easy to present the solution in the
integral form (see below).

The construction of Fermi coordinates involves only the geodesics, which are orthogonal to the world
line of the observer gαβv

αuβ = v0 = 0. Then, FC zµ are defined by the following relations:

z0 = τ, zi = yi, i = 1, 2, 3. (3)

Similarly, the optical coordinates ζµ are constructed by means of light geodesics gαβv
αvβ = 0 of the

past v0 = −
√

∑3
i=1 (v

i)
2
:

ζ0 = τ, ζi = yi. (4)

Jacobi matrices, which connect the tensor components in the FC (or OC) and RNC include solutions
of the equation of geodesic deviation. The corresponding general formulae were found by Zhdanov and
Alexandrov (1990) and Alexandrov and Zhdanov (1992) (see also Pyragas et al., 1995). A fundamental
role is played by the matrices Sρ

σ (y
µ) and Cρ

σ (y
µ), which satisfy the equations:

D2S+DS = r̃S, (5)

D2C−DC = r̃C. (6)

Here D = yµ ∂
∂yµ , r̃

ρ
σ = R̃ρ

µνσ (y
τ ) yµyν , R̃ρ

µνσ is a result of the parallel transport of the curvature
tensor along the geodesic to the reference point. Geodesic deviations and the metric tensor in normal
coordinates as well as the aforementioned Jacobi matrixes are expressed through these matrices. In
particular, for the metric tensor in optical coordinates gOpt

µν we have (Alexandrov & Zhdanov, 1992)

goptµν = ηρσG
Oρ
µ GOσ

ν , (7)

where

G
Oρ
0 = C

ρ
0 + S

ρ
iΩ

i
ky

k, G
Oρ
j = S

ρ
j + S

ρ
0

yj

y0
. (8)
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Similarly, for the metric in Fermi coordinates gFermi
µν (Zhdanov & Alexandrov, 1990)

gFermi
µν = ηρσG

Fρ
µ GFσ

ν , (9)

G
Fρ
0 = C

ρ
0 + S

ρ
iΩ

i
ky

k, G
Fρ
j = S

ρ
j . (10)

It should be noted that the matrixes GOρ
µ and GFρ

µ appearing here are nothing but the operator of

parallel transport along the geodesic in the corresponding coordinates. Thus, GOρ
µ directly describes the

transfer of the wave 4-vector and the polarization from the source to the observer.

3. WEAK FIELD

In weak-field approximation the metric tensor of spacetime gµν (x
τ ) is treated as a sum of Minkowski

tensor ηµν and a perturbation term hµν , so that

gµν = ηµν + hµν (x
τ ) , (11)

where all of the components of hµν are much less than one (and similarly for all derivatives of hµν). Then
one ignores all products of hµν (or its derivatives). The Christoffel symbols can be calculated as

Γµ
νλ =

1

2
gµτ (gτν,λ + gτλ,ν − gνλ,τ ) =

1

2
ηµτ (hτν,λ + hτλ,ν − hνλ,τ ) , (12)

and Riemann tensor as

Rρµνσ =
1

2
(hρσ,µν + hµν,ρσ − hµσ,νρ − hνρ,µσ) . (13)

A simple coordinate transformation of the form

xµ = x′µ
−

1

2
hµ
ν (x

τ
c ) (x

′ν
− xν

c )−
1

2
Γµ
νσ (x

τ
c ) (x

′ν
− xν

c ) (x
′σ
− xσ

c ) (14)

converts metric tensor as follows

g′µν (x
′τ ) = ηµν + hµν (x

′τ )− hµν (x
τ
c )− hµν,τ (x

τ
c ) (x

′τ
− xτ

c ) . (15)

In small terms differences (x′τ
− xτ

c ) are replaced with yτ :

g′µν (x
′τ ) = ηµν + h′

µν (x
τ
c , y

µ) , (16)

h′

µν (x
τ
c , y

µ) = hµν (x
τ
c + yµ)− hµν (x

τ
c )− hµν,σ (x

τ
c ) y

σ. (17)

In the case of moving reference point xµ
c (τ) this transformation depends on the parameter τ .

The transformed metric satisfies the following conditions:

g′µν (x
τ
c ) = ηµν , g′µν,τ (x

σ
c ) = Γ′

µν,τ (x
σ
c ) = 0.

In order to simplify the formulae below, we shall omit the primes associated with the transformation
(12).

Let’s introduce three sets of integrals through which all necessary quantities can be expressed:

Iµν (x
σ
c , y

τ ) =
1

s

s
∫

0

hµν (x
σ
c , s1v

σ) ds1, Jµν (x
σ
c , y

τ ) =

s
∫

0

hµν (x
σ
c , s1v

σ)

s1
ds1,

Kµν (x
σ
c , y

τ ) = s

s
∫

0

hµν (x
σ
c , s1v

σ) ds1
s21

. (18)

Integrating the geodesic equation (2) with the expression (12), we find the transformation to RNC
(cf. Marzlin, 1994)
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xµ = xµ
c + yµ − yνηµσIνσ +

1

2
ηµσyνyλ (Jνλ − Iνλ),σ . (19)

There and below the comma denotes the partial derivative with respect to the normal coordinates.
In the case of a weak field matrices Sρ

σ (y
µ) and Cρ

σ (y
µ) are presented in the following form:

Sρ
σ = δρσ +Σρ

σ, Cρ
σ = δρσ +∆ρ

σ, (20)

Σ, ∆ being small. We linearize equations (5,6) and by integration we obtain

Σµν =
1

2

[

hµν − 2Iµν + 2yρ
(

Jρ(ν,µ) − 2Iρ(µ,ν)
)

+ yρyσ (Jρσ,µν − Iρσ,µν)
]

, (21)

∆µν =
1

2

[

hµν − 2yρJρ(µ,ν) + yρyσ (Kρσ,µν − Jρσ,µν)
]

. (22)

Substituting these expressions into (7-10) one can easily obtain expressions for the metric in FC and
OC. Of course, the same expressions can be obtained by successive transformation of coordinates first to
RNC (19) and then to the FC and OC in accordance with formulae (3) and (3).

4. SUMMARY

We developed the method to construct the reference frame of a local observer basing on geodesics,
their deviation, and parallel transport. We applied it to the non-inertial observer in an arbitrary weak
gravitational field, for two kinds of coordinates: optical and Fermi. We have found the transformation
formulae to the new systems and the metric tensor components in the new systems via the integrals of
the metric perturbations. The results can be useful for the interpretation of the most precise astrometric
projects such as GAIA or future space VLBI.
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