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ABSTRACT. A new method allowing to average the equations of motion in the N-body problem
in a set of standard osculating elements with the usage of all the standard expansions of perturbing
functions is proposed. The main idea is to double the number of variables and to conduct an averaging
in a corresponding extended phase space. The additional variables disappear from the final results and
transformation formulae. Once obtained, the averaged equations of motion can be applied in semi-
analytical schemes for numerical integration as well as for further dynamical studies.

Only exceptional cases of celestial mechanical problems allow a construction of a precise analytical
solution. As a rule, these are the model problems which allow to get an idea about the global behavior
of a solution but are not precise enough to get the real positions of celestial objects. As an alternative, a
series of methods to obtain an analytical solution in an approximate way has been elaborated (Le Verrier,
Gauss, Lindstedt, Hamilton, Jacobi, Poincaré, Hori, Deprit and others) and successfully applied for solar
system ephemerides, satellite and asteroid theories. Due to the presence of numerous resonances, not
even a formal convergence can be guaranteed in most cases. The semi-analytical approach can then be
applied based on the idea going back to Poincaré’s statement that the short-periodic perturbations do
not play a significant role in the long-term dynamics. The main problem of going beyond the first order
approximation is not only the immense size of analytical calculations but also due to the fact that the
differential equations of the N-body problem do not allow a canonical representation in standard oscu-
lating elements of the orbits. The two known possibilities to deal with a single Hamiltonian are:
1. The Jacobi Hamiltonian formalism (Jacobi, 1842), where the position and velocity of a planet m1 are
given in a reference frame with origin in m0; position and velocity of m2 are given in a reference frame
with origin in the barycenter of m1 and m0, etc. Due to this hierarchical structure, no general expression
for the perturbing function exists.
2. The Poincaré reduction (Laskar & Robutel, 1995) where the angular variables and the correspond-
ing momenta are defined in two different reference systems. This approach necessarily introduces non-
osculating elements in the expansions. Both of these methods require the introduction of generalized
orbital elements instead of standard osculating elements (Beaugé et al., 2007). We propose here a way to
use the advantages of a canonical formalism in standard osculating elements. To conduct the transfor-
mation, the Lie-series method has been chosen. This method gives the solution and the transformation
formulae in explicit form and (in contrast to Poincaré’s method) avoids the appearance of mixed terms.

In fact, every differential equation can be written in canonical form with the help of some additional
variables. To give an idea, let us consider the equations of motion of two bodies a and b around a central
body in some system of osculating canonical elements
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These equations can be written as one canonical system after introducing additional variables Y =
(ya,yb) conjugate to X = (xa,xb) in the 2 ∗ 2 ∗ 6 dimensional phase space as
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For the extended canonical system in Equation (2) we can apply a conservative Lie-series transformation
to obtain a new Hamiltonian averaged according to a chosen scheme up to the desired order in the small
parameter of the problem (mass of the perturbing body relative to the mass of the central body). With
a special choice of generating function S, the resulting formulae do not contain the additional variables
and represent in fact the averaged system in Equation (1) in standard mean osculating elements. The
averaged equations of motion cannot principally built a canonical system but have a compact quasi-
canonical form expressed through the Poisson brackets. For the case of three fully interactive bodies up
to second order in the small parameter they can be written in the following form (the upper index (1)
marks the new elements): for body a
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and for body b
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Here < fi >s stands for the secular part of f which is of order i in the small parameter and the indices at
the Poisson brackets denotes in which elements they should be calculated. The terms on the right side are
principally new: they visualize in an unexpectedly simple form the fact that the osculating elements do
not build a canonical set in the N-body problem. The algorithm can be applied to an arbitrary number
of interacting bodies and extended to further approximations. In case of mean-motion resonances the
resonant terms should be preserved in the averaged equations of motion for further numerical integration
or qualitative dynamical studies.

The simplified form of the algorithm has already been applied to the problem of asteroid motion in
the gravitational field of fully interacting perturbing bodies (Tupikova, 2009). It was shown that in the
case when only the equations for a massless body have been averaged, they still keep the canonical form
at least to order three in the small parameter. Our method revealed also some important new terms that
were missed in those theories where not the whole system of differential equations of motion of all the
bodies involved has been treated simultaneously in the same algorithm, but an already simplified model
for the system of perturbing bodies has been inserted into the equations of asteroid motion.
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