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ABSTRACT. Polar motion analysis is commonly based upon symmetric linearised Euler-Liouville
equations. Then, in absence of forcing, the rotation pole coordinates evolve in the same way. Actu-
ally, expressing thoroughly the pole tide and taking into account the triaxiality, the equations become
asymmetric with respect to the pole coordinates. This leads to the formulation of the generalised Euler-
Liouville equation, for which we derive a general solution. We discuss possible observational consequences.

1. INTRODUCTION

The geophysical analysis of the polar motion is generally accomplished thanks to the symmetric
linearised Euler-Liouville equations in the Terrestrial Reference Frame (TRF):

m +
i

σ̃c
ṁ = Ψ (1)

where m = m1 + im2 is the complex equatorial coordinate of the instantaneous rotation pole and σ̃c =
σc(1 + i

2Q ) the complex Chandler angular frequency of which the quality factor Q (within the range

40− 200) accounts for dissipation. There Ψ means the modelled equatorial excitation, produced by mass
transports within the Earth or its hydro-atmospheric layers. In this equation m1 and m2 are driven in the
same way by geophysical excitation. Actually it neglects any asymmetric effects resulting from triaxiality
and rotational deformation. Whereas triaxiality has been investigated by many studies (see e.g. Chen
and Shen 2010), the asymmetry brought by ocean pole tide is oddly overlooked. The consistent analysis
of both effects is done. This leads to an extended form of equatorial Euler-Liouville equation, for which
we propose a general solution.

2. ASYMMETRIC EFFECTS

We start from the Euler-Liouville equation for a triaxial Earth expressed in the frame of the mean
principal axes Gx′y′z′ associated with inertia moment A < B < C (Munk and Mac Donald 1960):

m′

1 −
B

(C − A)Ω
ṁ′

2 = Ψ′

1 m′

2 +
A

(C − B)Ω
ṁ′

1 = Ψ′

2 (2)

where m′
1 and m′

2 are rotation pole coordinates related to Gx′y′z′, and Ψ′
1 and Ψ′

2 are the components
of the equatorial excitation function in Gx′y′z′. We adopt the values A = 8.010083(9) 1037 kg m2,
B = 8.010260(9) 1037 kg m2, C = 8.036481(9) 1037 kg m2 derived by Chen and Shen (2010) from EGM08
gravity model. Note that (B − A)/A ≈ 2, 5 10−5 whereas (A − C)/A ≈ (B − C)/B ≈ 3 10−3. The
equatorial excitation function is given by:

Ψ′

1 =
Ωc′13 + h1

Ω(C − A)
+

Ωċ′23 + ḣ′
2

Ω2(C − A)
−

L′
2

Ω2(C − A)
; Ψ′

2 =
Ωc′23 + h2

Ω(C − B)
−

Ωċ′13 + ḣ′
1

Ω2(C − B)
+

L′
1

Ω2(C − B)
(3)

where c1/2,3 are the off-diagonal inertia moment increments, h1/2 the components of the relative angular
momentum and L1/2 the external torque. The triaxiality affects the geophysical function at the level of
1%. Insofar as the modelling of the latter effect has a much larger relative uncertainty, the difference
between C − A and C − B can be cast aside. Let Ā be the mean equatorial moment given by:

Ā = (A + B)/2 (4)

then, the equatorial geophysical function is approximated by:

Ψ′ = Ψ′

1 + iΨ′

2 =
Ωc′ + h′

Ω(C − Ā)
−

i

Ω

Ωċ′ + ḣ′

(C − Ā)Ω
+ i

L

Ω2(C − Ā)
(5)
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After having introduced the triaxial coefficients:

r =

√

(C − A)A

(C − B)B
= 1.00379 , ∆r = r − 1 ≈ 3.8 10−3 (6)

the equations (2) can be shortened into the form:

m′

1 −
1 − ∆r

σe
ṁ′

2 = Ψ′

1 m′

2 +
1 + ∆r

σe
ṁ′

1 = Ψ′

2 (7)

with σe =
√

(C−A)(C−B)
AB Ω = e Ω (second order terms in ∆r are neglected). For practical purpose we

have to go back to the Terrestrial Reference Frame Gxyz. In a first approximation the triaxial frame can
be deduced from the TRF by the axial rotation of angle λA = −14.92851(8)± 0.0010◦ (Chen and Shen
2010). So for going back to TRF, we apply the complex coordinate change m = m′eiλA (correspond to
the axial rotation of angle −λA which brings inertia axis Gx′ in coincidence with Gx). In the TRF we
have also c = c′eiλA . Finally we obtain:

m1 −
1 − ∆r cos 2λA

σe
ṁ2 −

∆r sin 2λA

σe
ṁ1 = Ψ1; m2 +

1 + ∆r cos 2λA

σe
ṁ1 +

∆r sin 2λA

σe
ṁ2 = Ψ2 (8)

with λA the longitude of the first principal inertia axis and Ψ = Ψ1 + iΨ2 the geophysical excitation
expressed in TRF:

Ψ = Ψ1 + iΨ2 =
Ωc + h

Ω(C − Ā)
−

i

Ω

Ωċ + ḣ

(C − Ā)Ω
+ i

L

Ω2(C − Ā)
(9)

In a first approach we neglect the influence of the fluid core. Let k̃2 = k2 + ik2 ≈ 0.3(1 + i0.01) be the
solid Earth Love number, the rotational excitation associated with the solid Earth is expressed by:

χr =
k̃2

ks
m (10a)

By analogy the rotational angular momentum function caused by ocean pole tide is

χr
o =

k̃o

ks
[A1m1 + A2m2 + i(A2m1 + B2m2)] (10b)

where we have introduced the equivalent oceanic Love number k̃o = ko + iko with the real part

ko =
3

5
(1 + k2 − h2)

ρo

ρ⊕
(1 + k′

2) ≈ 0.05 (11)

There k2 = 0.3, h2 = 0.6 and k′
2 = −0.3, ρo ∼ 1035 kg/m3 is the ocean density, and ρ⊕ = 5500 kg/m3

the Earth density. According to this notation, the Desai’s model of equilibrium ocean pole tide (Desai
2002, Eq. 24) is associated with the coefficients A1 = 0.942 B1 = −0.021 B2 = 0.746.

3. GENERALIZED EULER-LIOUVILLE EQUATIONS

Removing the rotational excitations (10a) and (10b) from the right hand side of (8) and putting them
into the left hand side, the equatorial Euler-Liouville equations take the generalised form:

(1 + α1)m1 −
1+β1

σe
ṁ2 + γ1m2 + δ1

σe
ṁ1 = Ψ

(pure)
1

(1 + α2)m2 + 1+β2

σe
ṁ1 + γ2m1 + δ2

σe
ṁ2 = Ψ

(pure)
2

(12a)

with the particular coefficients

e′ = σe

Ω
α1 = −

k2+koA1−koB1

ks
α2 = −

k2+koB2+koB1

ks

β1 = −∆r cos 2λA + e′ k2+koB2+koB1

ks
β2 = ∆r cos 2λA + e′ k2+koA1−koB1

ks

γ1 = k2−koB1+koB2

ks
γ2 = −

k2+koB1+koA1

ks

δ1 = −(∆r sin 2λA + e′ k2+koB1+koA1

ks
) δ2 = ∆r sin 2λA + e′ −k2+koB1−koB2

ks

(12b)

By contrast to (1) these equations exhibit an asymmetry with respect to m1 and m2 and cannot be
reduced to a complex form. The generic form (12a) define the Generalised Linearised Euler-Liouville
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Equations. In the considered case here-above, the coefficients of these equations respect the following
orders of magnitude |αi| . 0.3 |βi|, |γi|, |δi| . e (e= flattening).

Solution in frequency domain (12a) gives two eigenfrequencies. The positive one is associated with
the Chandler angular frequency including the damping:

σ̃c ≈ σe

[

√

(1 + α1)(1 + α2) + i
1

2
(γ2 − γ1 + δ1(1 + α2) + δ2(1 + α1))

]

(13)

The second eigenfrequency is the complex conjugate of σ̃c:

σ̃−

c = −σ∗

c (14)

In frequency domain the solution is given by:

m1(σ)
m2(σ)

≈ −
σ2

e

(σ − σ̃c)(σ − σ̃−
c )

(1 + α2 + i σ
σe

δ2)Ψ1(σ) +
(

i σ
σe

(1 + β1) − γ1

)

Ψ2(σ)

(1 + α1 + i σ
σe

δ1)Ψ2(σ) −
(

i σ
σe

(1 + β2) + γ2

)

Ψ1(σ)
(15)

Let Ψ(t) = Ψ0e
iσ0t be a circular excitation at angular frequency σ0. From (15) its effect on on polar

motion is:

m(t) = −

Ψ0σ
2
e

(σ0 − σ̃c)(σ0 − σ̃−

c )

»„

2 + α1 + α2 + i(γ1 − γ2) +
σ0

σe

(2 + β1 + β2) + i
σ0

σe

(δ1 + δ2)

«

eiσ0t

2

+

„

α2 − α1 − i(γ1 + γ2) −
σ0

σe

(β2 − β1) − i
σ0

σe

(δ2 − δ1)

«

e−iσ0t

2

–
(16a)

where we identify the quantities A+, A−, m+
0 and m−

0 by:

m(t) = −

Ψ0σ
2
e

(σ0 − σ̃c)(σ0 − σ̃−

c )

“

A
+

e
iσ0t + A

−

e
−iσ0t

”

= m
+
0 e

iσ0t + m
−

0 e
−iσ0t (16b)

4. POSSIBLE OBSERVATIONAL CONSEQUENCE

We apply the previous formalism to the case of a triaxial Earth partially covered by the oceans.
Putting the corresponding coefficients (12b) into (13), the Chandler angular frequency is:

σ̃c ≈ σe

(

1 −
k̃2

ks
−

k̃o

ks

A1 + B2

2

)

(17)

After having introduced the effective Love number k̃ = k̃2 + k̃o
A1+B2

2 the Chandler frequency takes the

classic form σ̃c ≈ σe

(

1 − k̃
ks

)

. According to (16) a circular excitation at frequency σ0 produces two

circular components in polar motion with opposite frequencies, that is an elliptical motion. The term
circling in the same direction as the excitation has the complex amplitude:

m+
0 = −

Ψ0σ
2
e

(σ0 − σ̃c)(σ0 − σ̃−
c )

A+ (18)

with

A+ ≈

(

1 −
k̃2

ks
−

k̃o

ks

A1 + B2

2

)∗

+
σ0

σe
=

σ∗
c + σ0

σe
=

σ0 − σ̃−
c

σe
(19)

Thus:

m+
0 = −

Ψ0σe

(σ0 − σ̃c)
(20)

and we recognise the classic term (or symmetric), exhibiting the unique resonance at Chandler angular
frequency σ̃c. But there appears also an exotic term of opposite frequency −σ0 given by the complex
amplitude:

m−

0 = −
Ψ0σ

2
e

(σ0 − σ̃c)(σ0 − σ̃−
c )

A− (21)
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with

A− ≈
ko

ks

A1 − B2

2
+ i

ko

ks
B1 −

σ0

σe

(

∆reiλA + e′
ko

ks

A1 − B2

2
+ ie′

ko

ks
B1

)

(22)

Although the term m−

0 presents a double resonance, both at Chandler frequency and its opposite, it
is strongly reduced by the smallness of the coefficient A− (same order than e). We compute the ratio
m−

0 /Ψ0 in two cases: i) oceans and triaxiality are considered together ii) triaxiality is neglected. Results,
displayed in Figure 1a, show that m−

0 /Ψ0 reaches about 3 mas at the resonance frequencies, and mostly
results from the oceans alone (biaxiality). The relative impact of m−

0 with respect to the classical effect
m+

0 is quantified by the ratio m−

0 /m+
0 , represented in Figure 1b, and completed by the corresponding

ellipticity of the induced polar motion, given by the relative difference between small and great axes:

|m+
0 | + |m−

0 | − (|m+
0 | − |m−

0 |)

|m+
0 | + |m−

0 |
=

2|m−

0 |

|m+
0 | + |m−

0 |
(23)

The ratio m−

0 /m+
0 reaches a maximum of 3 at −σc (1 for ellipticity). Far from this frequency it remains

less than 0.05 (0.01 for ellipticity). Considering the retrograde annual term of the polar motion (10 mas),
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Figure 1: (a) Complex ratio m−

0 /Ψ0 (amplitude) in function of the excitation frequency, exhibiting
the double resonance at Chandler frequency and its opposite. (b) Amplitude of the ratio m−

0 /m+
0 and

corresponding ellipticity as function of the frequency.

we see that the asymmetric effect can reach 0.5 mas. On the other hand the geodetic excitation function
is radically modified in the vicinity of the Chandler frequency, as we havw shown in Bizouard (2012).

5. CONCLUSION

Pole tide excitation and Earth triaxiality introduce asymmetry which cannot be neglected in light of
the contemporaneous pole coordinates accuracy (0.1 mas). Their consistent handling leads to an extended
form of the linearised Euler-Liouville equation, for which we propose a general solution. Casting aside
the influence of the fluid core, we analyse possible observational consequence of the asymmetric effect. A
given circular excitation gives an elliptical polar motion, the ellipticity reaching 1 in the vicinity of the
negative Chandler frequency. Quantification of these effects strongly rely on ocean pole tide modelling.
A complete derivation and the consequence on geodetic excitation can be found in Bizouard (2012).
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