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ABSTRACT. In our preceding study (Vondrák et al. 2009) we formulated developments for the pre-
cessional contribution to the CIP X,Y coordinates suitable for use over long time intervals. They were
fitted to IAU 2006 close to J2000.0 and to the numerical integration of the ecliptic (using the integrator
package Mercury 6) and of the general precession and obliquity (using Laskar’s solution LA93) for more
distant epochs. Now we define the boundary between precession and nutation (both are periodic) to
avoid their overlap. We use the IAU 2006 model (that is based on the Bretagnon’s solution VSOP87 and
the JPL planetary ephemerides DE406) to represent the precession of the ecliptic close to J2000.0, a new
integration using Mercury 6 for more distant epochs, and Laskar’s LA93 solution to represent general
precession and obliquity. The goal is to obtain new developments for different sets of precession angles
that would fit to modern observations near J2000.0, and at the same time to numerical integration of the
translatory-rotatory motions of solar system bodies on scales of several thousand centuries.

1. INTRODUCTION

This is a continuation of our preceding study (Vondrák et al. 2009) in which we demonstrated that
all models of precession in use, including the most recent one, IAU 2006 (Capitaine et al. 2003, Hilton
et al. 2006), lose their accuracy rapidly in time, being expressed in terms of polynomial development, no
matter which precession parameters are used. The IAU 2006 model is very accurate, but usable only for
a limited time interval (several centuries around the epoch J2000.0); its errors however rapidly increase
with longer time spans. In reality, precession is a complicated, very long-periodic process, with periods
of hundreds of centuries. This can be seen in numerically integrated equations of motion of the Earth in
the solar system and of its rotation.

Here we assume that precession covers all periods longer than 100 centuries; shorter ones are included
in the nutation. In this connection, it is necessary to mention that the IAU 2000 model of nutation
includes several terms with longer periods: 105 cy, 209 cy for the luni-solar terms and 933 cy, 150 cy,
129 cy, 113 cy for the planetary terms. The amplitudes of these terms are however very small (lower than
4 mas for one term and lower than 0.1 mas for the others).

The goal of the present study is to find relatively simple expressions for different precession parameters,
with accuracy comparable to the IAU 2006 model near the epoch J2000.0, and useful accuracy outside
the interval ±10 cy (a few arcminutes at the extreme epochs ±2000 cy).

2. NUMERICAL INTEGRATIONS

Here we use the following numerical integrations as a basis for all subsequent calculations:

• For the precession of the ecliptic (parameters PA = sinπA sin ΠA, QA = sinπA cosΠA) the new
integration of the solar system motion, using the package Mercury 6 (Chambers 1999), in interval
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±2000 cy from J2000.0, with 1-day steps. The elements of the Earth’s orbit are then smoothed and
interpolated with 1-cy steps.

• For the general precession and obliquity (parameters pA, ǫA) the integration LA93 by Laskar et al.
(1993) in the interval ±1 million years, with 10-cy steps, interpolated in 1-cy steps. Additional
corrections are applied to account for: slightly different values of the dynamical ellipticity (compat-
ible with the IAU 2006 model) and its secular change J̇2, constant and secular tidal change of the
obliquity.

In both cases, inside the interval ±10 cy around J2000.0 the integrated values are replaced with the
values computed from the IAU 2006 model which, in turn, is based on Bretagnon’s semi-analytical
theory VSOP87 (Bretagnon 1987) and JPL DE406 (Standish 1998) ephemerides.

The relations of the four above mentioned angles to other parameters describing precession are shown
in Fig. 1. To calculate different precession parameters, we obtain first the auxiliary angles α, β, γ from
the triangle ΥΥoN, and then the angles ϕ, δ by solving the triangle ΥΥoPt (see Vondrák et al. 2009).
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Figure 1: Precession parameters

From the triangle ΥoPtPo follow precession parameters θA, ζA

cos θA = − sinϕ sin(γ + δ − ε◦)

sin θA sin ζA = − sinϕ cos(γ + δ − ε◦) (1)

sin θA cos ζA = cosϕ,

and the triangle PoPtCo then yields precession parameters ωA, ψA:

cosωA = cos ε◦ cos θA + sin ε◦ sin θA sin ζA

sinωA sinψA = sin θA cos ζA (2)

sinωA cosψA = sin ε◦ cos θA − cos ε◦ sin θA sin ζA.

Solving the triangles PtCCo, PoPtCo we finally obtain the parameters
χA, zA:

sin εA sinχA = PA cosψA +QA sinψA

sin εA cosχA = cosπA sinωA − (PA sinψA −QA cosψA) cosωA

sin θA sin(zA + χA) = sinωA cos ε◦ − cosωA sin ε◦ cosψA (3)

sin θA cos(zA + χA) = sin ε◦ sinψA.

We used these formulas to calculate all above defined precession parameters in the interval ±2000 cy
with 1-cy steps. Since the pole coordinates X,Y are referred to the GCRS rather than the mean equator
and equinox of J2000.0, they require small additional corrections to account for displacements of the
celestial pole and equinox (see Eq.(3) in Vondrák et al. 2009).

3. ANALYTICAL APPROXIMATION

To find the long-term analytical approximation of precession parameters, we apply the following steps:

- Spectral analysis of integrated values is done, using a modified Vańıček method (Vondrák 1977);

- Periods found are identified with those found by Laskar et al. (1993, 2004). In positive cases, Laskar’s
values are adopted;

- Sine/cosine amplitudes of the terms found in preceding step, plus cubic parabola, are fitted to the
numerical integration. The weights used in the fit are very high close to J2000.0, and they decrease
quadratically with time;

- Small additional corrections are applied to the constant, linear and quadratic terms, so that the function
value and first two derivatives are identical with those of the IAU 2006 model.
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Here we show long-term expressions for only some of the precession parameters and their comparison
with both integrated values and the IAU 2006 model. In these examples, T is the time in Julian centuries,
running from J2000.0, and periodic terms have the general form

∑
(Ci cos 2πT/Pi + Si sin 2πT/Pi).

Table 1: Periodic terms in ψA, ωA
term C/S ψA[′′] ωA[′′] P [cy]

p + ν6 C1 -22420.160932 1314.679626 402.90
S1 -3354.740507 -8658.248888

p C2 12364.867916 1698.164478 256.75
S2 -3953.468853 5359.936261
C3 -1855.311803 -2946.745615 292.00
S3 7053.538527 -717.285550

p + s6 C4 2501.910635 691.170703 537.22
S4 -1895.196678 931.408851

p + g2 − g5 C5 111.451479 -14.110991 241.45
S5 143.109393 -12.736900
C6 70.863565 -534.673649 375.22
S6 1343.619428 -6.985495

2p + s3 C7 389.332023 -356.790963 157.87
S7 1727.488574 77.098670
C8 2128.481251 -142.160739 275.90
S8 316.951469 846.285243
C9 368.139198 256.137565 203.00
S9 -1217.037602 83.329986
C10 -785.264907 162.716848 445.90
S10 -407.953884 -324.406028
C11 -927.251157 95.138364 170.72
S11 -441.696960 -193.842226
C12 35.623831 -332.752312 713.37
S12 -87.277001 -5.493032
C13 -521.921176 124.581532 313.90
S13 -295.259639 -240.668180
C14 66.351105 82.685046 128.38
S14 -422.734446 18.984123

Long-term expressions for the precession angles ψA,
ωA, are given as

ψA = 8472.888973 + 5042.8012257T −

− 0.00740773T 2 + 285 × 10−9T 3 +
∑

ψ

ωA = 84283.366108− 0.4449631T + (4)

+ 0.00000068T 2 + 150 × 10−9T 3 +
∑

ω,

where the cosine/sine amplitudes of the periodic
parts

∑
ψ,

∑
ω are given in Table 1. The compar-

ison of the long-term model of precession angles ψ
(reduced by a conventional rate 5045′′/cy, in order
to see more details) and obliquity, ψA − 5045′′T
(top), ωA (bottom) is shown in Fig. 2a, in which
the vertical scale is in arcseconds.

The curves representing the new model and integrated values in Fig. 2 (full and dotted lines, respec-
tively) are very close so that they are graphically indistinguishable. The IAU 2006 precession model
(dashed line) fits well to both integrated values and new model near the epoch J2000.0, but it diverges
rapidly from both of them for more distant epochs.
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Figure 2: Long-term models of parameters a) ψA, ωA, b) X,Y
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Figure 3: Comparison of X,Y values - closeups

Closeups of the differences between the
IAU 2006 and long-term models from the inte-
grated values are depicted in Fig. 3; differences
in X,Y of the IAU 2006 model are shown as
short dashed and dotted lines, the differences
of the long-term model as full and long dashed
lines. The vertical scales are again in arcsec-
onds.
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Table 2: Periodic terms in X , Y
term C/S X[′′] Y [′′] P [cy]

p C1 -819.946005 75004.345355 256.75
S1 81491.288050 1558.521633

σ3 C2 -8444.676986 624.033815 708.15
S2 787.162943 7774.939774

p− g2 + g5 C3 2600.009737 1251.136728 274.20
S3 1251.296938 -2219.533890

p + g2 − g5 C4 2755.175572 -1102.213989 241.45
S4 -1257.951746 -2523.969336

s1 C5 -167.659179 -2660.663565 2309.00
S5 -2966.800362 247.850562

s6 C6 871.855033 699.292008 492.20
S6 639.744569 -846.485543

p + s4 C7 44.769702 153.167261 396.10
S7 131.600315 -1393.123929

p + s1 C8 -512.313270 -950.865460 288.90
S8 -445.040719 368.526188

p− s1 C9 -819.415456 499.756007 231.10
S9 584.524115 749.044958
C10 -538.071710 -145.189989 1610.00
S10 -89.756178 444.704321
C11 -189.793616 558.115977 620.00
S11 524.429711 235.934536

2p + s3 C12 -402.922967 -23.923094 157.87
S12 -13.549103 374.049112
C13 179.516279 -165.405552 220.30
S13 -210.157617 -171.329809
C14 -9.814377 9.344900 1200.00
S14 -44.920033 -22.899576

Long-term expressions for the precession angles X ,
Y , are given as

X = 5453.270624 + 0.4252850T −

− 0.00037173T 2
− 152 × 10−9T 3 +

∑
X

Y = −73750.937353− 0.7675456T − (5)

− 0.00018725T 2 + 231 × 10−9T 3 +
∑

Y ,

where the cosine/sine amplitudes of the periodic
parts X , Y are given in Table 2. The comparison
of the long-term model of precession angles X (top)
and Y (bottom) is shown in Fig. 2b, in arcseconds.

4. CONCLUSIONS

The present study demonstrates the possibility of constructing a new model of precession that is
equivalent to the most recent IAU model of precession in a short-term sense (up to several centuries
around J2000.0) and, at the same time, fitting well to modern long-term numerical integrations of the
motions of the solar system bodies. The accuracy of this solution is improved, with respect to Vondrák
et al. (2009), mainly in the long-term precession of the ecliptic. The long-term expressions are valid
only in the interval ±2000 cy from J2000.0; outside this interval their validity rapidly deteriorates. This
limitation not only reduces the necessary number of periodic terms, but also avoids the problem of
resonances in the solar system mentioned by Laskar et al. (2004). We also derived the expressions for all
other precession parameters that are not presented here due to the page limit, but they are available on
request from the first author.
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