

High-resolution atmospheric angular momentum functions from different ECMWF data classes

Journees "Systèmes de référence spatio-temporels" 20 - 22 September 2010, Paris

Michael Schindelegger¹, Johannes Böhm¹, Harald Schuh¹, David Salstein²

¹ Vienna University of Technology, Vienna, Austria ² Atmospheric and Environmental Research. Inc. Lexington, U.S.A.

GGOS Atmosphere

- funded by the FWF, the Austrian Science Fund
- based on a common data stream from the ECMWF, four prime quantities are determined in a consistent way:
 - Atmospheric Angular Momentum Functions
 AAM
 - Atmospheric Pressure Loading Corrections APL
 - Atmospheric Gravity Corrections
 AGC
 - Atmospheric Delays

http://ggosatm.hg.tuwien.ac.at/

Earth rotation excitation at daily and sub-daily periods, investigated with 2 different sets of AAM functions:

 6-hourly AAMF from standard ECMWF data: 'Atmospheric model' analysis

Ť

- **2. 3-hourly AAMF** from the reorganized assimilation system:
 'Atmospheric model (delayed cut-off)'
 - cut-off time = latest possible arrival time for observations
 - analysis cycles are combined with short-term forecasts in order to delay cut-off time and make products available earlier

Time span: 1 July 2004 to 30 June 2010

Amplitude spectra of AAM components:

- 6-hourly sampling restricts resolution in semi-diurnal band
- good agreement in these one-sided spectra

Conversion to atmospheric excitation:

- AAM \rightarrow AAMF
- Convolution of equatorial AAMF with transfer function of Brzezinski et al. [2002] in frequency domain
 - \rightarrow atmospheric exc. of polar motion: $p_a(\sigma)$

Two-sided spectra:

- Different signs of peaks
- 6-hourly wind term noisier

Atmospheric excitation:

- amplitude estimates (and noise) are smaller for 3-hourly AAM
- peaks in polar motion < 2 µas

Nutation:

The good agreement seen in the one-sided spectra emerges in this band!

Main atmospheric tides:

Diurnal tides [h]		Semi-diurnal tides [h]	
π1	24.13214		
P1	24.06589	Т2	12.01645
S1	24.00000	S2	12.00000
К1	23.93447	R2	11.98360
ψ1	23.86930		
ф1	23.80448		

By-eye detection of atmospheric tides:

By-eye detection of atmospheric tides:

Least squares adjustment on atmospheric excitation:

- Axial excitation modeled as $l(t) = \sum_{j=1}^{ntides} a_j \cos(\omega_j t) + b_j \sin(\omega_j t)$
 - j ... partial tide with frequency ω and unknown Fourier coefficients a and b
 → phase and mean amplitude of tidal wave
- Equatorial excitation adjusted similarly, but real and imaginary part treated separately, yields real pro-/retrograde and imaginary pro-/retrograde amplitudes
 - → pro-/retrograde phases and mean amplitudes of tidal wave

Least squares adjustment: mean amplitudes from 3-hourly AAMF

	Period [h]	equ. progr.	equ. retrogr.	axial
π1	24.13214	0.4	2.1	0.5
P1	24.06589	0.4	37.9	0.9
S1	24.00000	1.1	47.0	3.2
K1	23.93447	0.7	77.0	0.3
ψ1	23.86930	0.2	79.8	0.5
φ1	23.80448	0.0	27.9	0.2
Т2	12.01645	0.5	0.9	0.6
S2	12.00000	0.2	1.3	2.6
R2	11.98360	0.3	1.4	0.5

nutation amplitudes

amplitudes in [µas] (equatorial) and [µs] (axial)

Counteraction of pressure and wind terms in 3-hourly AAMF:

- leads to small amplitudes
- = cancelling out when adding pressure term spectrum and wind term spectrum in frequency domain:

equatorial case:

$$|p_a| = \sqrt{\Re(p_a)^2 + \Im(p_a)^2}$$

$$\Re(p_a) = \Re(p_a^{p}) + \Re(p_a^{w})$$
$$\Im(p_a) = \Im(p_a^{p}) + \Im(p_a^{w})$$

- visible in the time evolution of spectral content:
 - sliding window Fourier transform
 - normalized Morlet wavelet transform

Counteraction in LOD, S1 and S2 band split up:

Counteraction in polar motion, S1 and S2 (prograde) band split up:

Summary, conclusions:

- Two different ECMWF data classes yield different amplitudes and phases in atmospheric excitation of Earth rotation.
- However, nutation amplitudes are in good agreement.
- S2 and its side lobes show up in the delayed cut-off series.
- Small amplitudes in polar motion and LOD can be ascribed to the 'counteraction' of pressure and wind terms.

Outlook:

- Physical reasoning for counteraction.
- Of more practical importance: atmospheric forcing of nutation.

Thanks for your attention!