EPM- Ephemerides of Planets and the Moon of IAA RAS: their model, accuracy, availability

Pitjeva E.V. Bratseva O. A. Panfilov V.E.

Institute of Applied Astronomy, Russian Academy of Sciences Kutuzov Quay 10, St.Petersburg, 191187 Russia e-mail: evp@ipa.nw.ru
-Renewal of EPM ephemerides: constants, model, data

- Observations, their reduction, TT-TDB
-The orientation of EPM2010
-The values of solution parameters
-Availability of EPM

The EPM ephemerides (Ephemerides of Planets and the Moon) of IAA RAS originated in the seventies of the last century to support space flights and have been developed since that time.
All the modern ephemerides (DE - JPL, EPM - IAA RAS, INPOP IMCCE) are based upon relativistic equations of motion for astronomical bodies and light rays as well as relativistic time scales. The numerical integration of the equations of celestial bodies motion has been performed in the Parameterized Post-Newtonian metric for General Relativity in the TDB time scale.

EPM ephemerides are computed by numerical integration of the equations of motion of celestial bodies in the barycentric coordinate frame of J2000.0 by the Everhart method over the 400 years interval ($\mathbf{1 8 0 0}$ 2200) using the program package ERA (Ephemeris Research in Astronomy) (Krasinsky and Vasilyev, 1997).

The renovation of the planet part of the EPM ephemerides includes the constants, model, observation data.

Recent years of high-precision data of spacecraft have yielded significant improvements of a whole set of constants for planet ephemerides. Masses of planets were determined from data of spacecraft orbiting and passing near planets or from observation of satellites of these planets.

New values of masses of planets adopted by the 27 GA IAU and used in EPM ephemerides

Planet	Previous value	New value	Year	Authors
$\mathbf{M}_{\mathbf{M}} / \mathbf{M}_{\mathbf{E}}$	$1.23000345(5) \cdot 10^{-2}$	$1.23000371(4) \cdot 10^{-2}$	2009	Pitjeva,Standish
$\mathbf{M}_{\odot} / \mathbf{M}_{\mathbf{V}}$	4.0852371(6) $\mathbf{1 0}^{5}$	$4.08523719(8) \cdot 10^{5}$	1999	Konopliv et al.
$\mathbf{M}_{\odot} / \mathbf{M}_{\text {Ma }}$	3.098708(9) $\mathbf{1 0}^{6}$	$3.09870359(2) \cdot 10^{6}$	2006	Konopliv et al.
$\mathbf{M}_{\odot} / \mathbf{M}_{\mathbf{J}}$	$1.0473486(8) \cdot 10^{6}$	$1.047348625(17) \cdot 10^{3}$	2003	Jacobson
$\mathbf{M}_{\odot} / \mathbf{M}_{\text {Sa }}$	3.497898(18)	$3.4979018(1) \cdot 10^{3}$	2006	Jacobson et al.
$\mathbf{M}_{\odot} / \mathbf{M}_{\mathbf{P}}$	1.3521(15)	$1.36564(28) \cdot 10^{8}$	2008	Tholen et al.
$\mathbf{M}_{\odot} / \mathbf{M}_{\text {Eris }}$		$1.191(14) \cdot 10^{8}$	2007	Brown et al.
$\mathbf{M}_{\text {Ceres }} / \mathbf{M}_{\odot}$	4.39(4)	4.72(3) $\cdot 10^{-10}$	2009	Pitjeva, Standish
$\mathbf{M}_{\text {Pallas }} / \mathbf{M}_{\odot}$	1.59(5)	$1.03(3) \cdot 10^{-10}$	2009	Pitjeva, Standish
$\mathbf{M}_{\text {Vesta }} / \mathbf{M}_{\odot}$	1.69(11)	$1.35\left(3 \cdot 10^{-10}\right.$	2009	Pitjeva, Standish

The updated model of EPM2008 includes Eris and the other 20 largest trans-Neptunian objects into the process of the simultaneous numerical integration in addition to the major planets, the Moon, the Sun, the 301 biggest asteroids and accounts for the perturbations due to the solar oblateness and the massive ring of small asteroids.

Some tests have been made for estimating the effect of other TNO on the motion of planets, which have been modeled by the perturbation from a circular ring having a radius of 43 AU and different masses.
The minimum mass $\left(\mathrm{EPM}_{1-T N O}\right): 100000$ objects, $\mathrm{D}=100 \mathrm{~km}$, $\rho=\mathbf{2} \mathrm{g} / \mathrm{cm}^{3}, \mathbf{M} \min =\mathbf{1 1 0} \mathbf{M}_{\text {Ceres }}, \mathbf{M} \max \left(\mathbf{E P M}_{5-T N O}\right)=\mathbf{1 0 0}$ \mathbf{M} min. For $\mathbf{E P M}_{2-T N O}, \mathbf{E P M}_{3-T N O}, \mathbf{E P M}_{5-T N O}$ the mass of the TNO ring are $\mathbf{2 5 \%}, \mathbf{5 0 \%}$, and $\mathbf{7 5 \%}$ from the maximum mass.

The rms residuals in m and the weight unit errors σ_{0} for EPM ephemerides with differen masses of the TNO ring

Observations						
Interval	Martian landers $1976-1997$	Martian spacecraft $1998-2008$ 13903	Venus Express 2006-2007 547	Spacecraft at Jupiter $1973-2001$ 7	Spacecraft at Saturn $1979-2006$	σ_{0} $1913-2008$ Numbers n.p.
1348	1397101					
EPM2008	11.82	2.04	2.59	13.09	3.04	0.876
EPM $_{1-T N O}$	12.00	1.87	2.59	13.08	3.02	0.876
EPM $_{2-T N O}$	13.16	1.90	2.63	13.20	64.35	1.000
EPM $_{3-T N O}$	13.35	2.00	2.68	13.29	129.7	1.305
EPM $_{4-T N O}$	13.83	2.05	2.74	17.64	195.0	1.696
EPM $_{5-T N O}$	14.26	2.06	2.80	27.43	200.3	2.126

The dynamical model of EPM2010 ephemerides takes into account the following:

- mutual perturbations from major planets, the Sun, the Moon and 5 more massive asteroids;
- perturbations from the other 296 asteroids chosen due to their strong perturbations on Mars and the Earth;
- perturbation from the massive asteroid ring with constant mass distribution ;
- perturbations from the 21 largest TNO;
- perturbation from a massive ring of TNO in the ecliptic plane with the radius of 43 AU ;
- perturbations due to the solar oblateness $J_{2}=2 \cdot 10^{-7}$.

More 550000 data were used for construction of EPM2008. Observations used for constructing EPM2008

Optical data of outer planets and satellites 1913-2008, 49890
$\left.\begin{array}{l}\text { USNO } \\ \text { Pulkovo } \\ \text { Nikolaev } \\ \text { Tokyo } \\ \text { Bordeaux } \\ \text { LaPalma } \\ \text { Flagstaff } \\ \text { TMO }\end{array}\right\}$

Types	Years	A priori accuracy
optical transit	$1913-1994$	$1^{\prime \prime} \rightarrow 0^{\prime \prime \prime} 5$
photoelectric transit	$1963-1998$	$0^{\prime \prime} 8 \rightarrow 0^{\prime \prime} \mathbf{2 5}$
photographic	$1913-1998$	$1^{\prime \prime} \rightarrow 0^{\prime \prime} 2$
CCD	$1995-\mathbf{2 0 0 8}$	$0^{\prime \prime} 2 \rightarrow 0.06$

Radar observations of Mercury, Venus, Mars, 58112

Millstone
Haystack
Arecibo
Goldstone
Crimea

Types	Years	A priori accuracy
ranging	$1961-1997$	$100 \mathrm{~km} \rightarrow 150 \mathrm{~m}$

Spacecraft data obtained by DSN 1971-2008, 437612
$\left.\begin{array}{ll}\text { Mariner }-9 & \text { Venus } \\ \text { Pioneer }-10,11 & \text { Jupiter } \\ \text { Voyager } & \text { Jupiter } \\ \text { Phobos } & \text { Mars } \\ \text { Ulysses } & \text { Jupiter } \\ \text { Magelan } & \text { Venus } \\ \text { Galileo } & \text { Jupiter } \\ \text { Viking }-1,2 & \text { Mars } \\ \text { Pathfinder } & \text { Mars } \\ \text { MGS } & \text { Mars } \\ \text { Odyssey } & \text { Mars } \\ \text { Cassini } & \text { Saturn } \\ \text { VEX } & \text { Venus } \\ \text { MRO } & \text { Mars }\end{array}\right\}$

Types	Years	A priori accuracy
ranging	$1971-2008$	$6 \mathrm{~km} \rightarrow 1 \mathrm{~m}$
differenced range	$1976-1997$	$1.3 \rightarrow 0.1 \mathrm{~mm} / \mathrm{sec}$
radial velocity	$1992-1994$	$0.1 \rightarrow 0.002 \mathrm{~mm} / \mathrm{sec}$
Δ VLBI	$\mathbf{1 9 9 0}-\mathbf{2 0 0 7}$	$\mathbf{1 2} \mathrm{mas} \rightarrow \mathbf{0 . 3} \mathrm{mas}$

The main reductions of optical observations

- correction for the additional phase effect (the main phase corrections were made by observers themselves);
- corrections for referencing to the ICRF refrence frame: different catalogues \rightarrow FK4 (Sveshnikov, 1974; 2000)

FK4 \rightarrow FK5 (Standish, 1995)
FK5 \rightarrow ICRF (Mignard and Froeschle, 2000)

The required reductions of radar observations:

- the relativistic correction - the tine delay of the propagation of radio-signals in the gravitational field of the Sun (the Shapiro effect) and the reduction of observations from the coordinate time of the ephemerides to the proper time of the observer;
- the delay from the Earth's troposphere (the model of Niell, 1996 has been used for the global mapping function);
- the delay from the solar corona
(the following model was used for the solar corona reduction: $N_{e}(r)=\frac{A}{r^{6}}+\frac{B+\dot{B} t}{r^{2}}$ where $N_{e}(r)$ is the electron density,
The parameters B and \dot{B} determined from observations were different for different solar conjunctions);
- the corrections for the topography of the planet surfaces
(for Venus and Mars for their topography has been carried out with the help of modern hypsometric maps of surfaces, and using the representation of the global topography by an expansion of spherical functions of $16-18$ degrees; the topography of Mercury has been represented by Legendre functions to the second order with estimating the expansion coefficients from observations).

$$
\begin{aligned}
& T T(T A I)=T A I+32.184 s ; \quad \frac{d(T T-T D B)}{d T D B}=\left(L_{\mathbf{B}}+\frac{1}{c^{2}} \alpha^{\prime}\right)\left(1+L_{\mathbf{B}}-L_{\mathbf{G}}\right)-L_{\mathbf{G}}+\frac{1}{c^{4}} \beta^{\prime} \\
& U T C=T A I+\mathbf{c}(i) ;
\end{aligned}
$$

- the orbital elements of all the planets and 18 satellites of the outer planets observations whose been used to improve the orbits of these planets;
- the value of the Astronomical Unit in m;
- three orientation angles of the ephemerides relative to the International Celestial Reference Frame (ICRF) and their velocities;
- 13 rotation parameters of Mars and the coordinates of the three landers on the martian surface;
- masses of Jupiter and the ten asteroids that perturb Mars most strongly, mean densities for three taxonomic classes of asteroids ($\mathrm{C}, \mathrm{S}, \mathrm{M}$), the mass and the radius of the asteroid ring, the ratio masses of the Earth and the Moon;
- the solar quadrupole moment $\left(J_{2}\right)$ and 21 parameters of the solar corona for different conjunctions with the Sun;
- eight coefficients of Mercury's topography and the corrections to the surface levels of Venus and Mars;
- five coefficients of the phase effect correction for the outer planets;
- constant bias for Viking-1, Viking-2, Pathfinder, MGS and Odyssey data and some other series of observations, that were interpreted as calibration errors of the instruments or as systematic errors of unkhown origin;
- the post-model parameters $\left(\beta, \gamma, \dot{G} / G, \ddot{G} / G, \dot{\pi}_{i}, \dot{a}_{i} / a_{i}\right)$.

EPM2010 have been oriented to ICRF with the accuracy better than 1 mas by including into the total solution the 196 ICRF-base VLBI measurements of spacecraft (Magellan, Phobos, MGS, Odyssey: Venus Express, and Mars Reconnaissance Orbiter, Cassini) 1989-2010 near Venus and Mars, Saturn.

The rotation angles for the orientation of EPM2008 onto ICRF

Interval	Number of observations	ε_{x} mas	ε_{y} mas	ε_{z} mas
$1989-1994$	20	4.5 ± 0.8	-0.8 ± 0.6	$-\mathbf{- 0 . 6} \pm 0.4$
$1989-2003$	62	1.9 ± 0.1	-0.5 ± 0.2	-1.5 ± 0.1
$1989-2007$	118	-1.528 ± 0.062	1.025 ± 0.06	1.271 ± 0.046
$1989-2010$	196	0.099 ± 0.047	-0.052 ± 0056	0.045 ± 0.030

Mean values and rms residuals for radiometric observations

| Planet | Type of data | \|Time interval| | N | $\bigcirc-C\rangle$ | σ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MERCURY | τ [m] | 1964-1997 | 746 | 0 | 575 |
| VEnUS | τ [m] | 1961-1995 | 1354 | -2 | 584 |
| | Magellan dr [mm/s] | 1992-1994 | 195 | 0 | 0.007 |
| | MGN,VEX VLBI [mas] | 1990-2007 | 22 | 1.6 | 3.0 |
| | Cassini $\tau[\mathrm{m}]$ | 1998-1999 | 2 | 4.0 | 2.4 |
| | VEX τ [m] | 2006-2009 | 1288 | 0.0 | 3.6 |
| MARS | $\tau[\mathrm{m}]$ | 1965-1995 | 403 | 0 | 719 |
| | Viking T [m] | 1976-1982 | 1258 | 0 | 8.8 |
| | Viking dr [mm/s] | 1976-1978 | 14978 | -0.02 | 0.89 |
| | Pathfinder $\tau[\mathrm{m}]$ | 1997 | 90 | 0 | 2.8 |
| | Pathfinder $d \tau[\mathrm{~mm} / \mathrm{s}$] | 1997 | 7569 | 0 | 0.09 |
| | MGS τ [m$]$ | 1998-2006 | 7342 | 0 | 1.4 |
| | Odyssey T [m] | 2002-2007 | 5257 | 0 | 1.2 |
| | MRO τ [m$]$ | 2006-2007 | 380 | 0 | 2.5 |
| | spacecraft VLBI [mas] | 1989-2010 | 136 | 0.0 | 0.6 |
| JUPITER | spacecraft $\tau[\mathrm{m}]$ | 1973-2000 | 7 | 0.0 | 11.8 |
| | spacecraft VLBI [mas] | 1996-1997 | 24 | -1.8 | 9.5 |
| SATURN | spacecraft $\tau[\mathrm{m}]$ | 1979-2006 | 33 | 1.0 | 20.2 |
| URANUS | VGR2 τ [m] | 1986 | 1 | 1.9 | 105 |
| NEPTUNE | VGR2 T [m] | 1989 | 1 | 0.0 | 14 |

Mean values and rms residuals for optical optical observations and spacecraft encounters ${ }^{*}, \alpha$ and δ in mas, 1913-2009

| Planet | N | $\mid\langle O-C\rangle_{\alpha}$ | σ_{α} | $\|<O-C\rangle_{\delta}$ | σ_{δ} |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| VENUS* * | 4 | 1.5 | 2.0 | 1 | 6.5 |
| JUPITER | 13038 | 10 | 184 | -29 | 197 |
| JUPITER* | 16 | 0 | 1.9 | -4.9 | 8.0 |
| SATURN * | 16246 | -2 | 153 | -1 | 146 |
| SATURN* * | 92 | 0.1 | 0.4 | 0.0 | 0.4 |
| URANUS | 11692 | 3.7 | 172 | 0.8 | 204 |
| URANUS* | 2 | -43 | 9 | -26 | 12 |
| NEPTUNE | 11342 | 4.9 | 155 | 6.4 | 198 |
| NEPTUNE* | 2 | -9 | 3.5 | -14 | 4.0 |
| PLUTO | 5470 | 0.4 | 141 | 3 | 142 |

The rms residuals of ranging for Viking are $8.8 \sim \mathrm{~m}$, for Pathfinder 2.8~m, for MGS and Odyssey 1.2-1.4 m, for Cassini (Saturn) 3.0 m , for VEX 2.6 m. VEX - 3.6 m.

Comparison of DE and EPM ephemerides

DE405-EPM2008 DE421-EPM2008

Maximum Deferences in the heliocentric distances of planets for DE and EPM ephemerides, 1950-2050

Planet	DE405-EPM2008	DE421-EPM2008
Mercury	384 m	185 m
Venus	53.7 m	4.6 m
Earth	26.8 m	11.9 m
Mars	272 m	233 m
Jupiter	19.7 km	4.8 km
Saturn	29.3 km	0.4 km
Uranus	864 km	310 km
Neptune	6100 km	848 km
Pluto	29000 km	1800 km

Differences in the heliocentric distances of inner planets for DE and EPM ephemerides, 1950-2050

Parameters obtained from the DE, EPM ephemeris improvement processes at JPL and at IAA RAS, proposed to WG NSFA and adopted at 27 IAU GA as current best estimates of astronomical constants

Masses of the largest asteroids:

$$
\begin{aligned}
& M_{\text {Ceres }} / M_{\odot}=4.72(3) \cdot 10^{-10} \\
& M_{\text {Pallas }} / M_{\odot}=1.03(3) \cdot 10^{-10} \\
& M_{\text {Vesta }} / M_{\odot}=1.35(3) \cdot 10^{-10} .
\end{aligned}
$$

$$
\begin{gathered}
\text { The Earth-Moon mass ratio: } \\
M_{\text {Earth }} / \mathrm{M}_{\text {Moon }}=81.300568 \pm 0.000003
\end{gathered}
$$

or as the Moon_Earth mass ratio, at it is customary in the NSFA:

$$
\mathbf{M}_{\text {Moon }} / \mathbf{M}_{\text {Earth }}=0.0123000371 \pm \mathbf{0 . 0 0 0 0 0 0 0 0 0 4}
$$

The value of the Astronomical Unit: $\mathrm{AU}=(149597870700 \pm 3)$ м.
Is consistent with the value $\mathbf{G M}_{\odot}=1.32712442099(10) \cdot 10^{20}\left[\mathrm{~m}^{3} \mathrm{~s}^{-2}\right]$ proposed to the NSFA WG by W. Folkner.

Two parameters characterizing the ring modeling the effect from the rest of small asteroids are:

$$
M_{\text {ring }}=(0.87 \pm 0.35) \cdot 10^{-10} M_{\odot}, R_{\text {ring }}=(3.13 \pm 0.05) \mathrm{AU} .
$$

The total mass of the main belt asteroids represented by the sum masses of 301 asteroids and the asteroid ring is:
$M_{\text {belt }}=(13 \pm 2) \cdot 10^{-10} M_{\odot}(\approx 3$ Ceres mass $)$.
The mass value of the ring of TNO is:

$$
M_{\text {TNOring }}=(498 \pm 14) \bullet 10^{-10} M_{\odot},(5 \sigma) .
$$

The total mass of all TNO including Pluto, the 21 largest TNO and the TNO ring of other TNO objects with the 43 AU radius is:
$\mathrm{M}_{\text {TNO }}=\mathbf{7 7 5 \cdot 1 0 ^ { - 1 0 }} \mathrm{M}_{\odot},(\approx \mathbf{1 6 4}$ Ceres mass or 2 lunar mass).
The quadrupole moment of the Sun:

$$
\begin{gathered}
\mathrm{J}_{2}=(2.0 \pm 0.5) \cdot 10^{-7} . \\
\text { PPN parameters: } \\
|\beta-1|<0.0002, \quad|\gamma-1|<0.0002 .
\end{gathered}
$$

A possible variability of the gravitational constant

$$
\dot{\mathrm{G}} / \mathrm{G}=(-5.87 \pm 4.44) \cdot 10^{-14} \text { в год }(3 \sigma)
$$

New program package Calc_Eph containing IAA Planetary and Moon Ephemerides (EPM2004, EPM2008) along with associated reading and interpolating routines was recently created.

ftp://quasar.ipa.nw.ru/incoming/EPM/

Routines included in the package:

- support polynomial approximation for both binary and ASCII ephemeris files,
- allow user to obtain the rectangular coordinates of the sun, moon, and nine major planets with respect to different centers (barycentric, geocentric, geliocentric and planetocentric),
- written in standard languages: Fortran, C, Pascal, Java,
- source code available to outside users via FTP,
- easy to use, accompanied by user manual.

Moreover, Fortran realization of this package gives a possibility to obtain access to differences between the times TT and TDB (for EPM2004 and EPM2008) and ephemerides of the other seven bodies code named "planets - dwarves": Ceres, Pallas, Vesta, Eris, Haumea, Makemake, Sedna, obtained simultaneously with the main EPM2008 ephemerides.

The updated model of EPM2008 includes the 21 largest TNO into the process of the simultaneous numerical integration.

Name	$\begin{gathered} \mathbf{a} \\ {[\mathrm{AU}]} \end{gathered}$	e	$\begin{gathered} \mathbf{i} \\ {\left[{ }^{\circ}\right]} \end{gathered}$	$\begin{gathered} \mathbf{D} \\ {[\mathrm{km}]} \end{gathered}$	$\begin{gathered} \mathrm{GM}_{i} / \mathrm{GM}_{\odot} \\ {\left[\mathbf{1 0}^{-10}\right]} \end{gathered}$
Pluto+Charon	39.48	0.25	17.14	2390	73.23
Eris	67.67	0.44	44.19	2397	83.99
$2003 \mathrm{EL}_{61}$	43.34	0.19	28.19	1490	21.12
Sedna (90377)	523.45	0.85	11.93	1490	17.42
$2005 \mathrm{FY}_{9}$	45.74	0.15	29.00	1800	30.71
Quaoar (50000)	43.09	0.04	8.00	1260	10.53
$2002 \mathrm{TC}_{302}$ (84522)	55.49	0.30	35.05	1064	6.34
Orcus (90482)	39.39	0.22	20.52	946	3.77
Varuna (20000)	43.16	0.06	17.15	890	1.84
$2002 \mathrm{UX}_{25}$ (55637)	42.85	0.14	19.41	838	3.10
Ixion (28978)	39.31	0.25	19.70	820	2.90
$2002 \mathrm{MS}_{4}$	41.65	0.15	17.69	804	2.74
$2003 \mathrm{MW}_{12}$	42.95	0.14	21.49	765	2.36
$2006 \mathrm{QH}_{181}$	42.15	0.11	26.96	764	2.35
$2004 \mathrm{XR}_{190}$	57.05	0.08	46.75	750	1.67
$2002 \mathrm{AW}_{197}(55565)$	47.51	0.13	24.31	790	2.22
$2005 \mathrm{RN}_{43}$	41.58	0.02	19.29	730	2.05
$1995 \mathrm{SM}_{55}$ (24835)	42.15	0.11	26.96	704	1.84
$2004 \mathrm{GV}_{9}$ (90568)	41.90	0.08	22.03	697	1.78
$2005 \mathrm{RR}_{43}$	43.07	0.14	28.55	697	1.78
$2003 \mathrm{AZ}_{84}$	39.69	0.17	13.54	686	2.06
2002 TX $_{300}(55636)$	43.51	0.12	25.86	620	1.26

The total mass of the 21 largest TNO is $204 \cdot 10^{-10} \mathrm{M}_{\odot}$.

