LLR residuals of INPOP10a and constraints on post-newtonian parameters

Manche H., Fienga A., Laskar J., Bouquillon S., Francou G., Gastineau M.

Journées systèmes de référence spatio-temporels 20, 21, 22 september 2010

Fitting parameters to LLR observations

Planetary/lunar solution depends on:

- a dynamical model
- a model of data reduction
- a set of parameters ← least square fit to observations

Parameters involved in LLR measurements (188)

- positions of reflectors
- positions and velocities of stations
- Moon's initial conditions (position, velocity and librations)
- EMB's initial conditions (position and velocity)
- Stokes coefficients (up to 4th degree)
- time delays, Love numbers (Earth, Moon)
- post-newtonian parameters
- offsets applied on some observations (40x2)

But some of them are:

- not independent (transmission and reception stations of Haleakala)
- better determined with planetary observations ($M_{_{\rm F}}/M_{_{\rm M}}$, EMB's initial conditions)
- better determined with an another technique (VLBI \rightarrow motion of stations)
- are badly determined: $S_{43} = (-2.0 \pm 13.5) \times 10^{-6}$

Selection of fitted parameters

Iterations with elimination of the parameter having the greatest ratio error/value

- \rightarrow increase of residuals (but weak)
- \rightarrow decrease of formal errors on other parameters

Solution:		S074	 S065	 S059	 S055	 S051
Maximum ratio		750%	 9%	 3.6%	 1.2%	 0.3%
Station	Period	σ (cm)	 σ (cm)	 σ (cm)	 σ (cm)	 σ (cm)
Grasse (1)	1984-1986	15,9	 15,9	 16,0	 15,6	 16,2
Grasse (2)	1987-1995	6,3	 6,3	 6,4	 6,0	 8,2
Grasse (3)	1995-2010	3,7	 3,7	 4,0	 5,4	 6,9
Mc Donald	1969-1985	31,2	 31,4	 31,8	 36,1	 50,0
MLRS1 (1)	1982-1985	73,3	 73,0	 73,3	 72,5	 71,7
MLRS1 (2)	1986-1988	8,0	 7,5	 7,3	 7,4	 9,8
MLRS2 (1)	1988-1999	4,3	 4,3	 4,3	 4,3	 6,5
MLRS2 (2)	1999-2008	4,6	 4,6	 4,8	 4,9	 6,5
Haleakala	1984-1992	8,1	 8,2	 8,1	 8,4	 11,6
Apollo	2006-2009	4,8	 4,9	 4,9	 5,3	 7,1

formal error (1- σ) on C_{33M} : 6.8x10⁻⁷ \rightarrow 3.3x10⁻⁸ \rightarrow 6.3x10⁻⁹ \rightarrow 5.2x10⁻⁹ \rightarrow 4.6x10⁻⁹

Choice of maximum ratio <5% leads to 59 parameters fitted

Residuals comparison INPOP10a / DE423

		INPOP10a	DE423
Station	Period	σ (cm)	σ (cm)
Grasse (1)	1984-1986	16,0	14,7
Grasse (2)	1987-1995	6,4	5,9
Grasse (3)	1995-2010	4,0	3,9
Mc Donald	1969-1985	31,8	29,8
MLRS1 (1)	1982-1985	73,3	70,3
MLRS1 (2)	1986-1988	7,3	6, 1
MLRS2 (1)	1988-1999	4,3	4,7
MLRS2 (2)	1999-2008	4,8	4,6
Haleakala	1984-1992	8,1	8, 1
Apollo	2006-2009	4,9	4,7

DE423: fit of all parameters only involved in reduction of observations Residuals DE423 better than INPOP10a \leftarrow lunar core ?

Tests of post-newtonian parameters β and γ

PN parameters are involved in:

- the dynamical part of the solution (equations of motion) EIH acceleration vector (β,γ) geodesic additional torque upon the Earth and the Moon (γ)
- the reduction of observations time scale transformation TT-TDB (β,γ) time delay due to relativistic light deflection (γ)

Fit of β and/or γ together with the same 59 parameters as in INPOP10a: \rightarrow confidence limits at 99.7% (~9.8 σ):

- (59)+β: β-1=(-0.2±1.4)x10⁻³ → Müller et al., 2008
 (59)+γ: γ-1=(-1.1±2.5)x10⁻³
- (59)+ β + γ : β -1=(5.1±5.1)x10⁻³ and γ -1=(-9.7±9.0)x10⁻³

Tests of post-newtonian parameters β and γ

PN parameters are involved in:

- the dynamical part of the solution (equations of motion) EIH acceleration vector (β,γ) geodesic additional torque upon the Earth and the Moon (γ)
- the reduction of observations time scale transformation TT-TDB (β,γ) time delay due to relativistic light deflection (γ)

Fit of β and/or γ together with the same 59 parameters as in INPOP10a: \rightarrow confidence limits at 99.7% (~9.8 σ):

- (59)+ β : β -1=(-0.2±1.4)x10⁻³ cor(β ;X)<0.35
- (59)+ γ : γ -1=(-1.1±2.5)x10⁻³ cor(γ ;X)<0.33
- $(59)+\beta+\gamma$: $\beta-1=(5.1\pm5.1)\times10^{-3}$ and $\gamma-1=(-9.7\pm9.0)\times10^{-3}$ cor $(\beta;\gamma)=-0.96$

Strong correlation \rightarrow biased values ?

Method:

1600 couples of (β,γ) values fixed in [-0.05,0.05]² for each set, fit of the same 59 parameters as in INPOP10a

then computation of
$$\chi^2(\beta, \gamma) = \sum_i \rho_i^2 (O - C)_i^2$$
 and $R(\beta, \gamma) = \sqrt{\chi^2/\chi_0^2 - 1}$

Contour lines for R= 1%, 2%, 5%, 10% and 20%

Method:

1600 couples of (β,γ) values fixed in [-0.05,0.05]² for each set, fit of the same 59 parameters as in INPOP10a

then computation of
$$\chi^2(\beta, \gamma) = \sum_i \rho_i^2 (O - C)_i^2$$
 and $R(\beta, \gamma) = \sqrt{\chi^2/\chi_0^2 - 1}$

Contour lines for R= 1%, 2%, 5%, 10% and 20%

better determined combination: 2β -11 $\gamma \neq 4\beta$ - γ (η+3)

Method:

1600 couples of (β,γ) values fixed in [-0.05,0.05]² for each set, fit of the same 59 parameters as in INPOP10a

then computation of
$$\chi^2(\beta, \gamma) = \sum_i \rho_i^2 (O - C)_i^2$$
 and $R(\beta, \gamma) = \sqrt{\chi^2/\chi_0^2 - 1}$

Contour lines for R= 1%, 2%, 5%, 10% and 20%

better determined combination: 2β -11 $\gamma \neq 4\beta$ - γ (η+3)

$$\begin{split} &\mathsf{R}(1,1) < 1.005 \; x \; \mathsf{R}(\beta_{_0},\gamma_{_0}) \\ &\mathsf{Grasse \; LLR \; residuals \; 4 \; cm \rightarrow 4.02 \; cm} \\ &\to not \; \mathsf{significant} \end{split}$$

Conclusion

- INPOP10a built with 59 fitted parameters to LLR observations
- residuals close but not as good as DE423 ones
- uncertainties on β or γ are consistent with Müller et al., 2008
- fitted value of (β, γ) together might be not significant
- better constraints with planetary observations than with LLR