Optical positions of ICRF sources using UCAC3 reference-stars

RESEARCH SCIENCE INSTITUTE «Nikolaev Astronomical Observatory», Ukraine

International Celestial Reference System

RADIO

OPTICAL + Near IR

Observations

1.5-m telescope (RTT150), Bakyrlytepe (Turkey) D=1500 mm, F=11600 mm

1) Size of CCD – 1530 x1020, scale – 0".16/pixel field of view – 4'.1 x 2'.7, size of pixel – 9μ m x 9μ m (2000 September – 2002 May, 127 fields around ERS)

2) Size of CCD – 2048 x2048, scale - 0".24/pixel field of view – 8'.1x8'.1, size of pixel – 13.5µm x 13.5µm (2003 May – September, 67 fields around ERS)

1-m telescope at the Yunnan Observatory (China) D=1016 mm, F=13000 mm Size of CCD - 1024x1024, scale -0 437/pixelfield of view - 6'.4x6'.4, size of pixel - 24 µm x 24 µm

R-Magnitude in UCAC2 system

The magnitude limit for RTT 150 was estimating to be 21^m as for Tm YNO telescope -19^m.

Astrometric Reductions

 $\zeta_s = c + ax + by$

The average number of observations of one star is 6.

The mean Standard Errors for reference stars are about 15 mas in

 $\eta_s = f + dx + cy$

RESULT 1. OPTICAL POSITION

The optical positions of 171 optical counterparts of ERS were obtained. The mean values of formal standard errors are about **40** mas in both coordinates.

15 ERS from 171 have standard errors of a single position more than 100 mas

 $\Delta a \cos \delta = -6 \pm 4$ (52) mas, $\Delta \delta = 11 \pm 4$ (49) mas

RESULT 3. The Comparisons with previous reductions

Catalog	Δαcosδ, <i>mas</i>	Δδ, <i>mas</i>	Ν	Plate Solution		N stars
				σ ₀	σδ	
UCAC2	-7 ±4 (46)	13 ±4 (42)	113	39	38	11
UCAC3	-9 ±5 (48)	15 ±4 (43)	113	57	57	16
2MASS	-8 ±6 (68)	33 ±7 (76)	113	87	88	33

RESULT

3. The Comparisons with previous reductions

Radio/Optical Alignment

 $\Delta \alpha_{O-R} \cos \delta = \omega_x \sin \delta \cos \alpha + \omega_y \sin \delta \sin \alpha - \omega_z \cos \delta,$

 $\Delta \delta_{O-R} = - \omega_x \sin \alpha + \omega_y \cos \alpha$

ł	Catalog	W _X	Wy	Wz	σ	Ν
	UCAC2	-0,2±5,8	7,2±5,5	7,0±4,5	43	130
	UCAC3	-0,1±6,1	6,4±5,8	-1,8±3,5	57	152

There is no significant rotation between systems within an accuracy of 6 mas.

Conclusions

Astrometric positions for optical counterparts of 171 ERS from the ICRF ext.2 list were obtained using reference stars from the UCAC3 catalog in declination zone from – 40 to +80 degrees. The mean standard errors of a single position are 40 mas. The mean offsets between the ICRF radio positions and our optical positions related to the UCAC3 catalog are -6 ± 4 (52) mas and 11 ± 4 (49) mas in right ascension and declination, respectively.

The UCAC3 Catalog is a good densification of Hipparcos reference frame and can be used as reference astrometric catalog for all areas in the celestial sphere even in small CCD-fields.

Zonal differences between UCAC3 and 2MASS catalogers on their accuracy levels are not significant.

