NSFA WG Update

WG Numerical Standards of Fundamental Astronomy

- Goals
 - Update "IAU Current Best Estimates"
 - Conforming with IAU Resolutions/IERS Conventions/SI
- Members _{N. Capitaine}
 - A. Fienga
 - W. Folkner
 - T. Fukushima
 - J. Hilton
 - C. Hohenkerk

- G. Krasinsky
- B. Luzum
- G. Petit
- E. Pitjeva
- M. Soffel
- P. Wallace

IAU 2009 Resolution B2

- Adopted at the 2009 IAU General Assembly
- Current Best Estimates (CBEs) of WG became the IAU (2009) System of Astronomical Constants
- Recommends
 - Keeping CBEs as an electronic document
 - Developing a procedure for adopting CBEs
 - That IAU Division I establish a permanent body to maintain CBEs for fundamental astronomy

Features of New System wrt 1976 IAU System

- New, more descriptive category names
- Eight constants added: L_B, TDB₀, θ₀, dθ/ dt, M_S/M_{Eris}, M_{Ceres}/M_S, M_{Pallas}/M_S, M_{Vesta}/ M_S
- Two constants removed: τ and p
- Twelve values have been replaced: G, au, L_C, M_M/M_E, M_S/M_V, M_S/M_{Ma}, M_S/M_J, M_S/M_{Sa}, M_S/M_P, GM_S, GM_E, ϵ_0

Explanation of Table

- Items listed in green are new additions to the list of constants
- Unless otherwise noted, the constants should be considered to be in terms of SI units

Defining Constants (SI)

Constant	Value	Reference	Adopted
Natural Defining Constants			
С	2.997 924 58 x 10 ⁸ ms ⁻¹	CODATA 2006	IAU, IERS
Auxiliary Defining Constants			
k ^[1]	1.720 209 895 x 10 ⁻²	IAU 1976, Gauss (1857)	IAU
L _G	6.969 290 134 x 10 ⁻¹⁰	IAU 2000 Res. B1.9, Petit (2000)	IAU, IERS
L _B	1.550 519 768 x 10 ⁻⁸	IAU 2006 Res. B3	IAU
TDB ₀ ^[2]	-6.55 x 10⁻⁵ s	IAU 2006 Res. B3	IAU
θ ₀ [3]	0.779 057 273 264 0 revolutions	IAU 2000 Res. B1.8, Capitaine <i>et al.</i> (2000)	IAU
d0/dt ^[3]	1.002 737 811 911 354 48 rev UT1-day ⁻¹	IAU 2000 Res. B1.8 Capitaine <i>et al.</i> (2000)	IAU

Constant	Value	Reference	Adopted
Natural Measurable Constants			
G	6.674 28(67) x 10 ⁻¹¹ m ³ kg ⁻¹ s ⁻²	CODATA 2006	
Derived Constants			
au ^[4]	1.495 978 707 00(3) x 10 ¹¹ m	Pitjeva and Standish (2009)	
L _C	1.480 826 867 41(200) x 10 ⁻⁸	Irwin and Fukushima (1999)	IAU, IERS

Constant	Value	Reference	Adopted
Body Constants ^[5]			
M _M /M _E	1.230 003 71(4) x 10 ⁻²	Pitjeva and Standish 2009	
M _S /M _{Me}	6.023 6(3) x 10 ⁶	Anderson et al. (1987)	IERS
$M_{\rm S}/M_{\rm V}$	4.085 237 19(8) x 10 ⁵	Konopliv <i>et al.</i> (1999)	
M _S /M _{Ma}	3.098 703 59(2) x 10 ⁶	Konopliv <i>et al.</i> (2006)	
M _S /M _J	1.047 348 644(17) x 10 ³	Jacobson <i>et al.</i> (2000)	
M _S /M _{Sa}	3.497 901 8(1) x 10 ³	Jacobson <i>et al.</i> (2006)	

Constant	Value	Reference	Adopted
Body Constants			
M _S /M _U	2.290 298(3) x 10 ⁴	Jacobson <i>et al.</i> (1992)	IERS
M _S /M _N	1.941 226(3) x 10 ⁴	Jacobson (2009)	
M _S /M _P	1.365 66(28) x 10 ⁸	Tholen <i>et al.</i> (2008)	
M _S /M _{Eris}	1.191(14) x 10 ⁸	Brown and Schaller (2007)	
M _{Ceres} /M _S	4.72(3) x 10 ⁻¹⁰	Pitjeva and Standish (2009)	
M _{Pallas} /M _S	1.03(3) x 10 ⁻¹⁰	Pitjeva and Standish (2009)	
M _{Vesta} /M _S	1.35(3) x 10 ⁻¹⁰	Pitjeva and Standish (2009)	

Constant	Value	Reference	Adopted	
Body Constants				
a _E ^[6]	6.378 136 6(1) x 10 ⁶ m	Groten (2000), Bursa <i>et al.</i> (1998)	IERS	
J ₂ ^[6]	1.082 635 9(1) x 10 ⁻³	Groten (2000)	IERS	
dJ ₂ /dt	-3.001(600) x 10 ⁻⁹ cy ⁻¹	IAU 2006 Res. B1, Capitaine et al. (2005)		
GM _S	1.327 124 420 99(10) x 10 ²⁰ m ³ s ⁻² (TCB-compatible) 1.327 124 400 41(10) x 10 ²⁰ m ³ s ⁻² (TDB-compatible)	Folkner <i>et al.</i> (2008)		
GM _E	3.986 004 418(8) x 10 ¹⁴ m ³ s ⁻² (TCB-compatible) 3.986 004 415(8) x 10 ¹⁴ m ³ s ⁻² (TT-compatible) 3.986 004 356(8) x 10 ¹⁴ m ³ s ⁻² (TDB-compatible)	Ries <i>et al.</i> (1992)	IERS	

Constant	Value	Reference	Adopted	
Body Constants				
W ₀	6.263 685 60(5) x 10 ⁷ m ² s ⁻²	Groten (2000)	IERS	
ω ^[7]	7.292 115 x 10 ⁻⁵ rad s ⁻¹	Groten (2000)	IERS	
Initial Value at J2000.0				
ε ₀ ^[8]	8.438 140 6(1) x 10 ⁴ "	IAU 2006 Res. B1, Chapront <i>et al.</i> (2002)	IAU	

Notes

- 1. The Gaussian gravitational constant, k, defines au.
- 2. This constant comes from the expression TDB = TCB $L_B \times (JD_{TCB} T_0) \times 86400 + TDB_0$.
- 3. This constant comes from the expression $\theta(UT1) = 2\pi$ (0.7790572732640+1.00273781191135448 × (Julian UT1 date – 2451545.0).
- 4. The value for au is TDB-compatible. An accepted definition for the TCB-compatible value of au is still under discussion.
- 5. All values of the masses from Mars to Eris are the sum of the masses of the celestial body and its satellite(s).

Notes

- The values for a_e and J₂ are "zero tide" values (see IERS Conventions for an explanation of the terminology). Values according to other conventions can be found in Groten (2000).
- 7. ω is a nominal value and was chosen to have the number of significant digits limited to those for which the value can be considered constant.
- 8. ε_0 is a component of the IAU 2006 precession model, which includes expressions that are time dependent.
- 9. The rate of precession appearing in previous lists of constants is no longer appropriate given the IAU 2006 precession model.

Report

- In preparation
- To be published in *Celest. Mech. Dyn. Astr.*

General Scientific Issues

- Keep up with improvements of CBEs due to improved measurements, space missions, etc.
- Deal with expected limitation of constants
- Alternative methods for determining masses of asteroids
- Values provided by the geodetic community

Specific Scientific Issues (2009-2012)

New values for the mass of Mercury

 Based on MESSENGER data

Specific Scientific Issues (2009-2012)

- TCB-compatible au
 - Currently there is no accepted definition for a TCB-compatible au
 - Linked to the current definition of au
 - Would be impacted by a change in definition
 - Concern of Commission 52

Specific Scientific Issues (2009-2012)

- Gaussian gravitational constant (k) / astronomical unit (au) / heliocentric gravitational constant (GM_S)
 - Currently k is defining constant and au is a measured constant
 - Provided by K. Gauss in 19th century
 - Proposal by Capitaine (among others) to make au defining constant

Keep k a defining constant

Make au a defining constant

- Pros
 - Currently accepted practice
 - Long-standing definition
 - May be difficult to redefine practically
- Cons
 - Value is not modern

- Pros
 - Fixes au, which matches many astronomers' expectations
- Cons
 - Not currently accepted practice
 - Can all software handle the change?

Functionality Issues (2009-2012)

- How to adopt future CBEs?
 - Need to document a formal procedure
 - Request/proposal
 - Discussion
 - Vote
 - Plurality, Simple majority, Supermajority, Consensus
 - Archive old CBEs
 - Modify CBEs
 - Discuss draft of procedure at Journees

Functionality Issues (2009-2012)

- Design of CBE web site
 - Where is it hosted?
 - IAU or Division I Site
 - Local Site
 - Functionality
 - Based on similar ideas?
 - Gaia constant's web site
 - » http://gaia.esac.esa.int/gpdb/

Functionality Issues (> 2012)

- Future of group
 - To be decided by IAU Executive Committee
 - IAU Division I proposing that the IAU bylaws be changed to allow standing working groups
 - NSFA WG could become a standing working group